Quantum optical and nonlinear optical properties of semiconductors and heterostructures in photonic crystals



Institut(e): Fachbereich Physik und Wiss. Zentrum für Materialwissenschaften der Universität Marburg
AG Halbleitertheorie
Renthof 5
35032 Marburg

Tel.: 06421-282-1337
Fax: 06421-282-7076

Projektleiter: Prof. Dr. Stephan W. Koch
s.w.koch@physik.uni-marburg.de
Priv. Doz. Dr. Torsten Meier
Tel.: 06421-282-4221
torsten.meier@physik.uni-marburg.de
Sekretariat: Renate Schmid
Tel.: 06421-282-1337

renate.schmid@physik.uni-marburg.de
Mitarbeiter: Matthias Reichelt
Tel.: 06421-28-24217
Matthias.Reichelt@physik.uni-marburg.de
Bernhard Pasenow
Tel.: 06421-28-24217
Bernhard.Pasenow@physik.uni-marburg.de
 
Abstract:

Combining semiconductor heterostructures with photonic crystals allows us to study novel aspects of the light-matter coupling in condensed matter systems. The fascinating interplay between the field modes of a structured dielectric environment and the elementary optical excitations of the semiconductor material can be utilized to design some of the optical properties of hybrid semiconductor photonic-crystal structures. The main goal of our project is to develop and apply a microscopic theory which is capable of adequately describing the coupled dynamics of the electromagnetic field and the material excitations in a self-consistent fashion. The analysis of the semiconductor photoexcitations includes excitonic effects and further consequences of many-body interactions. Close to a spatially-structured dielectric environment, the Coulomb potential is significantly modified. Subsequently, the optoelectronic properties of semiconductor heterostructures are altered in comparison to a spatially homogeneous configuration and the optical response has to be computed including the proper longitudinal and transverse fields. We apply our theory to study pulse propagation effects in photonic band gap structures, modified absorption and emission properties, as well as lasing in specially designed photonic crystal cavity configurations.

Recent papers:

  • Exciton Formation in Semiconductors and the Influence of a Photonic Environment, M. Kira, W. Hoyer, T. Stroucken, and S.W. Koch, Phys. Rev. Lett. 87, 176401 (2001).
  • Excitons in Photonic Crystals, T. Stroucken, R. Eichmann, L. Banyai, and S.W. Koch, Journ. Opt. Soc. Am. B 19, 2292 (2002).
  • Exciton Effects in Photonic Crystal Structures, S.W. Koch, T. Stroucken, R. Eichmann, M. Kira, and W. Hoyer, Optics & Photonic News 13, 48 (2002).
  • Semiconductor absorption in photonic crystals, R. Eichmann, B. Pasenow, T. Meier, T. Stroucken, P. Thomas, and S.W. Koch, Applied Physics Letters 82, 355 (2003).
  • Semiconductor excitons in photonic crystals, R. Eichmann, B. Pasenow, T. Meier, T. Stroucken, P. Thomas, and S.W. Koch, phys. stat. sol. (b) 238, 439 (2003).
  • Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells, J.P. Prineas, J.Y. Zhou, J. Kuhl, H.M. Gibbs, G. Khitrova, S.W. Koch, and A. Knorr, Appl. Phys. Lett. 81, 4332 (2002).
  • Semiconductor Optics in Photonic Crystal Structures, T. Meier and S.W. Koch, in "Photonic Crystals - Advances in Design, Fabrication and Characterization", Eds. K. Busch, S. Lölkes, R.B. Wehrspohn, and H. Föll, Wiley-VCH, Berlin (2004), pp.~43-62.
  • Many-body Coulomb effects in the optical properties of semiconductor heterostructures, T. Meier, B. Pasenow, P. Thomas, and S.W. Koch, John von Neumann Institute for Computing, Jülich, Germany, NIC Series Vol. 20, 261 (2004).
  • Linear and nonlinear pulse propagation in a multiple-quantum-well photonic crystal, N.C. Nielsen, J. Kuhl, M. Schaarschmidt, J. Förstner, A. Knorr, S.W. Koch, G. Khitrova, H.M. Gibbs, and H. Giessen, Phys. Rev. B 70, 075306 (2004).
  • Nonlinear optical properties of semiconductor quantum wells inside microcavities, T. Meier, C. Sieh, S.W. Koch, Y.-S. Lee, T.B. Norris, F. Jahnke, G. Khitrova, and H.M. Gibbs, in "Optical Microcavities", Ed. K. Vahala, World Scientific (in print).
  • Adiabatically driven electron dynamics in a resonant photonic band gap: optical switching of a Bragg periodic semiconductor, M. Schaarschmidt, J. Förstner, A. Knorr, J.P. Prineas, N.C. Nielsen, J. Kuhl, G. Khitrova, H.M. Gibbs, H. Giessen, and S.W. Koch, Phys. Rev. B (in print).
Downloadable talks:

Spacedependent optical and electronic properties of semiconductor photoniccrystal structures

Semiconductor photonic-crystal structures: Optical spectra and carrier dynamics

Optical properties of semiconductor photoniccrystal structures


Zurück/Back

Stand: 2. December 2004, by F. Bollin