# **Optical Properties of Semiconductor Photonic-Crystal Structures**

## T. Meier, B. Pasenow, M. Reichelt, T. Stroucken, P. Thomas, and S.W. Koch

Department of Physics and Material Sciences Center, Philipps-University Marburg, Germany



# **Photonic crystals and semiconductors**

## **Photonic crystals**

- 1D, 2D, 3D
- photonic bandstructure
- light propagation, nonlinearities, ...
- interaction with atomic resonances = level systems

### **Semiconductors and heterostructures**

- bulk and quantum wells, wires, dots
- electronic bandstructure and confinement
- Coulomb interaction important for optical properties (excitons, etc.)
- level systems not adequate, instead many-body theory required





## **Outline**

## Brief description of theoretical approach



## Influence of modified transverse fields

- consequences of inhibited spontaneous emission
- changes of exciton statistics and photoluminescence

## Influence of modified longitudinal fields

- dielectric shifts result in spatially inhomogeneous band gap, exciton binding energy, and carrier occupations
- wave packet dynamics

## **Self-consistent solutions of Maxwell-Bloch equations**

- enhanced light-matter interaction due to light concentration
- strongly increased absorption and gain

#### **Photoexcited semiconductors**



Electron-hole attraction ⇒ hydrogenic series of exciton resonances below band gap



#### minimal Hamiltonian

$$\hat{H} = \hat{H}_{bandstructure} + \hat{H}_{Coulomb} + \hat{H}_{light-matter}$$





many-particle

interaction



interband excitation

single-particle states

Coulomb interaction introduces many-body problem ⇒ Consistent approximations required: Hartree-Fock, second Born, dynamics-controlled truncation, cluster expansion,

...

## **Equations of motion and light-matter interaction**

 semiclassical equations of motion for material excitations (density matrix): semiconductor Bloch equations

$$i\hbar \frac{\partial}{\partial t} p_{k} = \hbar \omega_{k} p_{k} + \left[ f_{k}^{e} + f_{k}^{h} - 1 \right] \left( \mu_{cv} \cdot E + \sum_{k' \neq k} V_{|k-k'|} p_{k'} \right) + i\hbar \frac{\partial}{\partial t} p_{k} \Big|_{corr}$$
phase space filling
Coulomb renormalization
scattering and correlations

and similar equations for carrier occupations  $f_k^e$  and  $f_k^h$ 

- Maxwell equation  $\nabla^2 E \left(\frac{n}{c}\right)^2 \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P}{\partial t^2}$
- material response described by  $P = \sum_{k} \mu_{cv}^{*} p_{k} + \mathrm{c.c.}$

$$\begin{array}{c} \mathbf{II} \\ \left\langle a_{v,k}^{\dagger} a_{c,k} \right\rangle \end{array}$$

## **Theoretical description of semiconductor optics**

• classical light field:

semiconductor Bloch equations + Maxwell's equations

 quantized light field (required for consistent description of luminescence):

semiconductor luminescence equations
= coupled dynamics of material and light-field modes
including photon-assisted density matrices

⇒ Consistent solution of coupled dynamics of light and material system

## Influence of transverse fields on semiconductor optics



#### Exciton resonance lies in a photonic band gap

Model study of exciton formation after injection of thermal electrons and holes in the bands:

Quantum wire in a photonic crystal.

Lowest exciton level lies inside photonic band gap (modeled by reduced recombination).

Solution of semiconductor luminescence equations.

## **Exciton distribution in quantum wire**



• T = 10 K, strong vs. weak recombination (free space) (1/100 due to photonic band-gap)

- strong depletion of q = 0 excitons in free space
- overall shape NOT Bose-Einstein distribution
- resulting influence on photoluminescence

Phys. Rev. Lett. 87, 176401 (2001)

## Influence of longitudinal fields on semiconductor optics

model system





- 2D photonic crystal (air cylinders surrounded by dielectric medium)
- cap layer
- semiconductor quantum well

• ellipsoidal shape of cylinder bottom

## Influence of longitudinal fields on semiconductor optics

longitudinal part: generalized Poisson equation

 $-\nabla\cdot\left[\epsilon(\mathbf{r})\nabla\phi(\mathbf{r},t)\right] = 4\pi\rho(\mathbf{r},t)$ 

generalized Coulomb potential  $\rm V_{\rm C}$ 

$$-\nabla \cdot [\epsilon(\mathbf{r})\nabla V_C(\mathbf{r},\mathbf{r}')] = 4\pi\delta(\mathbf{r}-\mathbf{r}')$$

solution for piecewise constant  $\mathcal{E}(\mathbf{r})$ 

$$V_C(\mathbf{r}, \mathbf{r}') = \frac{1}{\epsilon(\mathbf{r}')} \frac{1}{|\mathbf{r} - \mathbf{r}'|} - \frac{1}{4\pi} \sum_{ij} \left( \frac{1}{\epsilon_i} - \frac{1}{\epsilon_j} \right) \int_{\partial D_{ij}} da'' \frac{1}{|\mathbf{r}'' - \mathbf{r}|} \mathbf{n}''_i \cdot \mathbf{D}_l(\mathbf{r}'', \mathbf{r}')$$
  
$$= V_0(\mathbf{r}, \mathbf{r}') + \delta V(\mathbf{r}, \mathbf{r}')$$

#### ⇒ near a periodically structured dielectric the Coulomb potential varies periodically in space

J. Opt. Soc. Am. B 19, 2292 (2002)

## **Corrections due to generalized Coulomb potential**

 position-dependent band gap: biggest increase underneath center of the air cylinders

 position-dependent electron-hole attraction: strongest underneath center of the air cylinders



## **Excitons in photonic crystals**

numerically calculated absorption spectra for fixed c.o.m. positions



⇒ spatial variation of band gap (  $\sim 4E_B$ ) and exciton binding energy (  $\sim 2.5 E_B$ ) with periodicity of photonic crystal

Appl. Phys. Lett. 82, 355 (2003)

#### **Spectrally selective excitation**



phys. stat. sol. (b) 238, 439 (2003)

## **Excitons in photonic crystals II**

Quantum wires underneath one-dimensional ridges of dielectric material



## **Excitons in photonic crystals II**

Quantum wires underneath one-dimensional ridges of dielectric material



- $\Rightarrow$  variety of inhomogeneous excitons
- ⇒ spectrally selective excitation leads to spatially inhomogeneous carrier distributions

Pasenow, et al., to be published

## **Coherent wave packet dynamics**



⇒ spatially inhomogeneous carrier occupations evolve in time due to wave packet dynamics

## **Solution of Maxwell-Bloch equations**



- 2D array of dielectric cylinders surrounded by air
- Cylinders filled with semiconductor quantum wire
- Incoming plane wave polarized in direction of wires (TM mode)

#### **Optical spectra of photonic crystal**



 $\Rightarrow$  photonic bandstructure leads to frequency dependence  $\Rightarrow$  transmission vanishes in photonic band gap

#### **Optical spectra**



#### $\Rightarrow$ photonic bandstructure modifies absorption spectrum

### **Absorption spectra**



 $\Rightarrow$  strongly enhanced absorption

## **Field concentration**



 $\Rightarrow$  field concentrates in dielectric cylinders

Pasenow, et al., to be published

## Summary

- Due to inhibited spontaneous emission a photonic band gap strongly influences material properties
  - exciton formation and statistics, and photoluminescence



- spatially-varying band gap and exciton binding energy
- wave packet dynamics
- spatially-inhomogeneous quasi-equilibrium carrier occupations
- Light-matter interaction can be tailored
  - enhanced absorption (and gain) due to light concentration



#### Outlook: full self-consistent treatment of transversal and longitudinal effects

• combining carrier and light concentration effects

Edited by K. Busch, S. Lölkes, R. B. Wehrspohn and H. Föll

# Photonic Crystals

Advances in Design, Fabrication, and Characterization

WILEY-VCH



#### Interested in photonic crystals?

Activities of the groups funded by the DFG priority program *"Photonic Crystals"* are described in this book (published Spring 2004)

#### **Acknowledgments**

Deutsche Forschungsgemeinschaft

DFG

Heisenberg fellowship (TM)

Priority program "Photonic Crystals"





Forschungszentrum Jülich John von Neumann - Institut für Computing

NIC

cpu-time on parallel supercomputer

Interdisciplinary Research Center *Optodynamics,* Philipps University Marburg