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Photonic crystals and semiconductors
Photonic crystals

• 1D, 2D, 3D

• photonic bandstructure

• light propagation,
nonlinearities, …

• interaction with atomic
resonances = level systems

Semiconductors and heterostructures

• bulk and quantum wells, wires, dots

• electronic bandstructure and
confinement 

• Coulomb interaction important for 
optical properties (excitons, etc.)

• level systems not adequate,
instead many-body theory required

quantum well



Outline

Brief description of theoretical approach

Influence of modified transverse fields

• consequences of inhibited spontaneous emission
• changes of exciton statistics and photoluminescence

Influence of modified longitudinal fields

• dielectric shifts result in spatially inhomogeneous band gap,
exciton binding energy, and carrier occupations

• wave packet dynamics

Self-consistent solutions of Maxwell-Bloch equations

• enhanced light-matter interaction due to light concentration
• strongly increased absorption and gain
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Theoretical description of semiconductor optics

many-particle
interaction

Vq

interband excitationk

E c

v

minimal Hamiltonian

single-particle states

Coulomb interaction introduces many-body problem
⇒ Consistent approximations required: Hartree-Fock, 

second Born, dynamics-controlled truncation, cluster expansion,
...
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Equations of motion and light-matter interaction

• Maxwell equation

• semiclassical equations of motion for material excitations
(density matrix): semiconductor Bloch equations

• material response described by

and similar equations for carrier occupations      and

=
Coulomb renormalization scattering

and
correlations

phase space filling



Theoretical description of semiconductor optics

• classical light field:

semiconductor Bloch equations + Maxwell’s equations

• quantized light field 
(required for consistent description of luminescence):

semiconductor luminescence equations
= coupled dynamics of material and light-field modes

including photon-assisted density matrices

⇒ Consistent solution of coupled dynamics 
of light and material system



Influence of transverse fields on semiconductor optics

Exciton resonance lies in a photonic band gap

T
ra

ns
m

is
si

on A
bsorption

Energy

Model study of exciton formation after injection of
thermal electrons and holes in the bands:

Quantum wire in a photonic crystal.

Lowest exciton level lies inside photonic band gap 
(modeled by reduced recombination).

Solution of semiconductor luminescence equations.



Exciton distribution in quantum wire

• T = 10 K, strong vs. weak recombination
(free space) (1/100 due to photonic band-gap)

• strong depletion of q = 0 excitons in free space
• overall shape NOT Bose-Einstein distribution
• resulting influence on photoluminescence

Phys. Rev. Lett. 87, 176401 (2001)



• 2D photonic crystal (air cylinders
surrounded by dielectric medium) 

• cap layer
• semiconductor quantum well

• ellipsoidal shape of
cylinder bottom

Influence of longitudinal fields on semiconductor optics

model system



Influence of longitudinal fields on semiconductor optics

longitudinal part: generalized Poisson equation

generalized Coulomb potential VC

solution for piecewise constant ε(r)

J. Opt. Soc. Am. B 19, 2292 (2002)

⇒ near a periodically structured dielectric
the Coulomb potential varies periodically in space 



• position-dependent band gap:
biggest increase underneath 
center of the air cylinders

Corrections due to generalized Coulomb potential

• position-dependent electron-hole 
attraction: strongest underneath
center of the air cylinders



Excitons in photonic crystals

⇒ spatial variation of band gap ( ∼ 4EB) and 
exciton binding energy ( ∼ 2.5 EB)
with periodicity of photonic crystal

numerically calculated absorption spectra for fixed c.o.m. positions

Appl. Phys. Lett. 82, 355 (2003)
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Spectrally selective excitation
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⇒ energetically lowest (highest) excitation 
in between (underneath) air cylinders

phys. stat. sol. (b) 238, 439 (2003)

⇒ spatially inhomogeneous carrier occupations
excited by spectrally-narrow and
spatially-homogeneous pulses 



Excitons in photonic crystals II

Quantum wires underneath one-dimensional ridges of dielectric material



Pasenow, et al., to be published

⇒ variety of inhomogeneous excitons

Excitons in photonic crystals II

⇒ spectrally selective excitation leads to spatially
inhomogeneous carrier distributions

fe

Quantum wires underneath one-dimensional ridges of dielectric material



Coherent wave packet dynamics

Spectrally selective excitation in quantum wire,
relaxation modeled by T1 time (4ps)

⇒ spatially inhomogeneous carrier occupations evolve in time
due to wave packet dynamics



Solution of Maxwell-Bloch equations

• 2D array of dielectric cylinders 
surrounded by air

• Cylinders filled with semiconductor 
quantum wire

• Incoming plane wave polarized in 
direction of wires (TM mode)



Optical spectra of photonic crystal

⇒ photonic bandstructure leads to frequency dependence 
⇒ transmission vanishes in photonic band gap

(E-E ) [E ]G B



Optical spectra

⇒ photonic bandstructure modifies absorption spectrum

(E-E ) [E ]G B



Absorption spectra

⇒ strongly enhanced absorption

(E-E ) [E ]G B



Field concentration

⇒ field concentrates in dielectric cylinders

Pasenow, et al., to be published



Summary
Due to inhibited spontaneous emission a 
photonic band gap strongly influences material properties

• exciton formation and statistics, and photoluminescence

Coulomb interaction is altered near a photonic crystal

• spatially-varying band gap and exciton binding energy

• wave packet dynamics

• spatially-inhomogeneous quasi-equilibrium carrier occupations

Light-matter interaction can be tailored

• enhanced absorption (and gain) due to light concentration

Outlook: full self-consistent treatment of
transversal and longitudinal effects

• combining carrier and light concentration effects



Interested in photonic crystals?

Activities of the groups funded by 
the DFG priority program
“Photonic Crystals”
are described in this book
(published Spring 2004)
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