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Overview

* The Transverse part of the electromagnetic field 1s modified due
to photonic environment (= photonic bandgap, etc.)

* In the immediate vicinity of a photonic crystal the longitudinal
part of the electromagnetic field leads to significant space-
dependent modifications of the Coulomb-interaction

* Combining semiconductors and photonic crystals these
modifications can be used to

# get additional bound excitonic states
# localize electrons and holes at special points

# modify the laser threshold (gain for lower densities)



Model system

Microscopic theory for the semiconductor dynamics
The transversal effects of the photonic crystal are neglected.
Investigation of the longitudinal effects (Coulomb potential)

For schematic studies the quantum well can be replaced by
a quantum wire (1d inhomogeneous system).




Coulomb modifications (1)

Poisson's equation in inhomogeneous media:

/ unit cell
V- {

with

Inhomogeneity leads to significant space-dependent Coulomb
modifications due to surface polarizations in the photonic crystal.

For a planar interface the effect can be

explained by the image charge concept: 2| & ¢’ Q
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Coulomb modifications (2)

* The Hamiltonian for the equations of motion of the polarization,
electron and hole densities contains a kinetic part, the interaction
with the E-field and the Coulomb interaction.

* The Coulomb part differs from homogeneous case in the space-

dependent Coulomb modifications and the self interaction part.
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Eigenvalue equation for Py,

* Solving the linear polarization equation
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one can compute
the eigenvalues, eigenfunctions and optical matrix elements.

* Periodic one particle potential:
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e Via X’-formalism (expansion in order of the E-field) particle
densities can be calculated from the linear polarization.



Linear absorption and electron densities

Linear absorption

Electron densities
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* With Lorentzian broadening of the optical matrix elements linear
absorption spectra can be calculated.

* Double peaked excitonic resonance because of regions similar to

half space and homogeneous volume material.
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Density dynamics (ele

ctrons)
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* The resonant excitation of special excitonic states creates the

corresponding spatial density distributions.

* For later times: wave packet dynamics



Fermi-Dirac densities for electrons an holes

* One-particle Schrodinger equation in the periodic potential:
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* Using a Fermi-Dirac distribution for the eigenenergies static real
space (= quasi-equilibrium) densities can be computed:

0-7 | | I I |
unit cell electrons
0.6 holes 4
| n =0.4/aB i
0.5 no=0.3/ag

n0=02/aB

0.4 - n0=0.1/aB |

0.3
0.2 , |

T
0 m

O | | | | |

density [1/aB]

position [ag]



[Linear Relaxation

* Relaxation can be simulated through linear interpolation between

the static Fermi-Dirac densities and the dynamic densities:
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Quasi-equilibrium laser spectra

* Using static Fermi-Dirac densities laser spectra can be computed:

Homogeneous system: Svstem with photonic crystal:

—y
<z

o
[o]
-

‘ gain for .

gain for
/ Nog~ 0.3/8]3

/ ny~0.24/ap

| Im(X) [arb. units]
vl
SN
s
e
e
|1t
Im(X) [arb. units]

5
5 0 5 04 s 20 5 0 50

30 E- Eo) (meV]

* The inhomogeneous arrangement of electrons and holes leads to
laser gain for lower densities.
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Summary

The Coulomb interaction between charged particles in photonic
crystals 1s space-dependent and follows the periodicity of the
photonic environment.

Surface polarization causes an 1image charge like self-interaction.

This self-interaction potential leads to additional bound excitonic
states and can be used to localize particles.

The different excitonic wave functions can be excited by
spectrally narrow laser pulses.

The Coulomb modifications have influence on the laser threshold.
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