Lagrangefunktion $$L(x_{11},x_{12},x_{21},x_{22},y_1,y_2, \lambda, \mu_{11}, \mu_{21}, \mu_2, \nu)$$ $$ = \ U_1(x_{11}, x_{12})$$ $$- \ \lambda\left(\overline{U}_2 - U_2(x_{21},x_{22})\right)$$ $$- \ \mu_{11} (x_{11} - y_1)$$ $$- \ \mu_{21} (x_{21} - y_1)$$ $$- \ \mu_2 (x_{12} + y_{22} - y_2)$$ $$- \ \nu F(y_1,y_2)$$ $$ {\partial L \over \partial x_{11}} = {\partial U_1 \over \partial x_{11}} - \mu_{11} = 0 \Rightarrow {\partial U_1 \over \partial x_{11}} = \mu_{11} $$ $$ {\partial L \over \partial x_{12}} = {\partial U_1 \over\partial x_{12}} - \mu_{2} = 0 \Rightarrow {\partial U_1 \over\partial x_{12}} = \mu_{2} $$ $$ {\partial L \over \partial x_{21}} = {\partial U_2 \over \partial x_{21}} - \mu_{21} = 0 \Rightarrow {\partial U_2 \over \partial x_{21}} = \mu_{21} $$ $$ {\partial L \over \partial x_{22}} = {\partial U_2 \over \partial x_{22}} - \mu_{2} = 0 \Rightarrow {\partial U_2 \over \partial x_{22}} = \mu_{2} $$ $${\partial L \over \partial y_1} = \mu_{11} + \mu_{21} - \nu {\partial F \over \partial y_1} = 0 \Rightarrow \mu_{11} + \mu_{21} = \nu {\partial F \over \partial y_1} $$ $${\partial L \over \partial y_2} = \mu_{2} - \nu {\partial F \over \partial y_2} = 0 \Rightarrow \mu_{2} = \nu {\partial F \over \partial y_2} $$ $${\mu_{11} + \mu_{21} \over \mu_2} = {\partial F / \partial y_1 \over \partial F / \partial y_2}$$ $${\mu_{11} + \mu_{21} \over \mu_2} = {{\partial U_1 \over \partial x_{11}} + {\partial U_2 \over \partial x_{21}} \over \partial U_1 / \partial x_{12}} = {{\partial U_1 \over \partial x_{11}} + {\partial U_2 \over \partial x_{21}} \over \partial U_2 / \partial x_{22}}$$

$\mu_2$ kann als Preis des privaten Gutes interpretiert werden, $\mu_{i1}$ ist der Preisbeitrag von Individuum $j$ zum Produktionspreis des öffentlichen Gutes.