M.184.4454 R for Data Science | |
---|---|
(R for Data Science) |
Koordinator (coordinator): | Prof. Dr. Yuanhua Feng |
Ansprechpartner (contact): | Prof. Dr. Yuanhua Feng (yuanhua.feng[at]uni-paderborn.de) Sebastian Letmathe (lettron[at]mail.uni-paderborn.de) Dominik Schulz (dominik.schulz[at]upb.de) |
Credits: | 5 ECTS |
Workload: | 150 Std (h) |
Semesterturnus (semester cycle): | SoSe |
Studiensemester (study semester): | 1-4 |
Dauer in Semestern (duration in semesters): | 1 |
Lehrveranstaltungen (courses): | ||||||
---|---|---|---|---|---|---|
Nummer / Name (number / title) |
Art (type) |
Kontaktzeit (contact time) |
Selbststudium (self-study) |
Status (P/WP) (status) |
Gruppengröße (group size) | |
a) | K.184.44541 / R for Data Science | Vorlesung | P | |||
Wahlmöglichkeiten innerhalb des Moduls (Options within the module): | ||||||
Keine |
Empfohlene Voraussetzungen (prerequisites): |
---|
It is recommended that you have visited one of the following courses:
|
Inhalte (short description): |
---|
Part I of this course focuses on data visualization, data wrangling and data analysis by means of modern R-packages as well as programming of functions, algorithms etc.. The topics of Part II are more advanced. The students will learn how to build own R packages, work with R Markdown (a powerful tool for combining analysis, text editing and documenting code), create interactive applications by means of the "shiny" framework, manage data with R and SQL and learn how to use the programming language Python from within RStudio (an IDE for R). |
Lernergebnisse (learning outcomes): |
---|
Fachkompetenz Wissen (professional expertise): |
Studierende... |
Fachkompetenz Fertigkeit (practical professional and academic skills): |
Studierende... |
Personale Kompetenz / Sozial (individual competences / social skills): |
Studierende... |
Personale Kompetenz / Selbstständigkeit (individual competences / ability to perform autonomously): |
Studierende... |
Prüfungsleistungen (examinations) | |||
---|---|---|---|
Art der Modulprüfung (type of modul examination): Keine Modulprüfung | |||
Art der Prüfung (type of examination) |
Umfang (extent) |
Gewichtung (weighting) | |
a) | Projektarbeit | 10 - 15 pages | 50.00 % |
b) | Projektarbeit | 10 - 15 pages | 50.00 % |
Studienleistung / qualifizierte Teilnahme (module participation requirements) |
---|
Nein |
Voraussetzungen für die Teilnahme an Prüfungen (formal requirements for participating in examinations) |
---|
Keine |
Voraussetzungen für die Vergabe von Credits (formal requirements for granting credit points) |
---|
Die Vergabe der Credits erfolgt, wenn die Modulnote mindestens „ausreichend“ ist |
Gewichtung für Gesamtnote (calculation of overall grade) |
---|
Das Modul wird mit der Anzahl seiner Credits gewichtet (Faktor: 1) |
Verwendung des Moduls in den Studiengängen (The module can be selected in the following degree programmes) |
---|
M.Sc. IBS, M.Sc. BWL, M.Sc. International Economics and Management, M.Sc. Management, M.Sc. Management Information Systems, M.Sc. Taxation, Accountingand Finance, M.Sc. Winfo, M.Sc. Wirtschaftspädagogik, M.Ed. Wirtschaftspädagogik M.Sc. International Economics and Management |
Umfang QT (participation requirements): |
---|
Lernmaterialien, Literaturangaben (learning material, literature): |
---|
Main references: Wickham and Grolemund (2017). R for Data Science - Import, Tidy, Transform, Visualize, and Model Data. O'Reilly. Wickham (2019). Advanced R (2nd ed.). Chapman & Hall / CRC. Wickham (2015). R Packages: Organize, Test, Document, and Share Your Code. O’Reilly. Xie, Allaire and Grolemund (2018). R Markdown: The Definitive Guide. Chapman & Hall / CRC. Wickham (2021). Mastering Shiny: Build Interactive Apps, Reports, and Dashboards Powered by R. O’Reilly. Mailund (2017). Beginning Data Science in R - Data Analysis, Visualization, and Modelling for the Data Scientist. APRESS. Baumer et al. (2021). Modern Data Science with R. CRC Press. Zumel and Mount (2020). Practical Data Science with R (2nd ed.). Manning. Peng (2015). R Programming for Data Science. A Leanpub Book. |
Teilnehmerbegrenzung (participant limit): |
---|
Keine |
Sonstige Hinweise (additional information): |
---|
keine Teilnehmerbeschränkung |