M.184.5453 Advanced Time Series Analysis and Forecasting | |
---|---|
(Advanced Time Series Analysis and Forecasting) |
Koordinator (coordinator): | Prof. Dr. Yuanhua Feng |
Ansprechpartner (contact): | Sebastian Letmathe (lettron[at]mail.uni-paderborn.de) Prof. Dr. Yuanhua Feng (yuanhua.feng[at]uni-paderborn.de) Shujie Li (shujie.li[at]uni-paderborn.de) Dominik Schulz (dominik.schulz[at]upb.de) |
Credits: | 5 ECTS |
Workload: | 150 Std (h) |
Semesterturnus (semester cycle): | WS |
Studiensemester (study semester): | 1-4 |
Dauer in Semestern (duration in semesters): | 1 |
Lehrveranstaltungen (courses): | ||||||
---|---|---|---|---|---|---|
Nummer / Name (number / title) |
Art (type) |
Kontaktzeit (contact time) |
Selbststudium (self-study) |
Status (P/WP) (status) |
Gruppengröße (group size) | |
a) | K.184.54531 / Advanced Time Series Analysis and Forecasting | P | ||||
Wahlmöglichkeiten innerhalb des Moduls (Options within the module): | ||||||
Keine |
Empfohlene Voraussetzungen (prerequisites): |
---|
You should have visited one of the following modules:
|
Inhalte (short description): |
---|
This is an advanced lecture in time series analysis developed based on basic knowledge in time series. Hence, one of our Master modules W4451 or Bachelor modules W2453, or a comparable module that you have visited at another university is a necessary requirement. The main topics of this module will be divided into two parts: Part 1: Advanced linear time series models, including the analysis of time series with seasonality and different calendar effects, multivariate time series models as well as long memory time series models; and Part 2: advanced topics of non-linear and functional time series, including long memory volatility and duration models, multivariate volatility and correlation models, volatility and correlation measures based on high-frequency financial data as well as the analysis of functional time series with short or long memory. The focuses are on the introduction of the theory and methods, practical implementation in R and their application in forecasting and decision making. Practical implementation in Python will be discussed as well, given that suitable Python packages are available. Application to economic and financial time series, particularly in sustainable economics and finance, will be strongly emphasised. Semiparametric extensions of corresponding approaches under non-stationary component time series models will be described as far as possible. |
Lernergebnisse (learning outcomes): |
---|
Fachkompetenz Wissen (professional expertise): |
Studierende... Advanced knowledge in time series and forecasting; advanced R/Python skills |
Fachkompetenz Fertigkeit (practical professional and academic skills): |
Studierende... |
Personale Kompetenz / Sozial (individual competences / social skills): |
Studierende...
|
Personale Kompetenz / Selbstständigkeit (individual competences / ability to perform autonomously): |
Studierende... |
Prüfungsleistungen (examinations) | |||
---|---|---|---|
Art der Modulprüfung (type of modul examination): Keine Modulprüfung | |||
Art der Prüfung (type of examination) |
Umfang (extent) |
Gewichtung (weighting) | |
a) | Projektarbeit | 10 - 15 pages | 50.00 % |
b) | Projektarbeit | 10 - 15 pages | 50.00 % |
Studienleistung / qualifizierte Teilnahme (module participation requirements) |
---|
Nein |
Voraussetzungen für die Teilnahme an Prüfungen (formal requirements for participating in examinations) |
---|
Keine |
Voraussetzungen für die Vergabe von Credits (formal requirements for granting credit points) |
---|
Die Vergabe der Credits erfolgt, wenn die Modulnote mindestens „ausreichend“ ist |
Gewichtung für Gesamtnote (calculation of overall grade) |
---|
Das Modul wird mit der Anzahl seiner Credits gewichtet (Faktor: 1) |
Verwendung des Moduls in den Studiengängen (The module can be selected in the following degree programmes) |
---|
M.Sc. IBS, M.Sc. BWL, M.Sc. International Economics and Management, M.Sc. Management, M.Sc. Management Information Systems, M.Sc. Taxation, Accountingand Finance, M.Sc. Winfo, M.Sc. Wirtschaftspädagogik, M.Ed. Wirtschaftspädagogik M.Sc. International Economics and Management |
Umfang QT (participation requirements): |
---|
Lernmaterialien, Literaturangaben (learning material, literature): |
---|
Selected References: The main Text: Fuller (1996). Introduction to Statistical Time Series. Tsay (2010). Analysis of Financial Time Series. John Wiley. Beran, J., Feng, Y., Ghosh, S., Kulik, R. (2013). Long Memory Processes. Springer. Hautsch (2012). Econometrics of Financial High-Frequency Data. Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis, Springer Ghosh, S. (2018). Kernel Smoothing: Principles, Methods and Applications. Wiley. Ramsay, J.O, Silverman, B.W. (2005). Functional Data Analysis. Springer. Bowman, A, Azzalini, A. (2001). Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford. Selected readings on functional time series analysis as well as on semiparametric regression. |
Teilnehmerbegrenzung (participant limit): |
---|
Keine |
Sonstige Hinweise (additional information): |
---|
keine Teilnehmerbeschränkung |