IMORC: An Infrastructure for Performance Monitoring and Optimization of Reconfigurable Computers

Tobias Schumacher, Christian Plessl and Marco Platzner
University of Paderborn

Motivation

Model Driven Design
- Model driven approach for implementation of FPGA accelerators
- Performance estimation before real implementation
- Different cores communicate to each other
- Data flow graphs for performance estimation

Open Questions
- How should cores communicate to each other?
- How to verify and optimize the parameters of the model?
- Portability to new architectures?

Introduction to our Modeling Approach

Architecture Model
- Represents all cores in the system
- Cores specified by different parameters:
 - Memory latency / bandwidth
 - Operations available
 - General purpose cores (CPU) and special purpose cores available
- Performance counters help identifying performance bottlenecks
- Easily exchangeable
- Designed to be easily portable between different target architectures

Execution Model
- Task graph represents the algorithm
- Blocks of operations connected by communication points
- Graph gets mapped to the architecture model

THE IMORC Infrastructure

Request Arbiter
- One request FIFO per master
- PORTSEL: scheduler for selecting source port
- Can utilize performance counters for scheduling strategy
- Performance counters:
 - Number of times FIFOs are full
 - Same counters on data path

Work Flow using IMORC

Create Task Graph For Target Algorithm
- Additional cores
- Different memory locations

Create Initial Architecture Model
- Map task graph to architecture model
- Graph gets mapped to the architecture
- Synthesis and place & route using vendor tools

Estimate Performance, Identify Bottlenecks
- FPGA implementation
- Synthesis and place & route using vendor tools
- Estimate area and performance

Implement System Using IMORC
- FPGA implementation
- Synthesis and place & route using vendor tools
- Synthesize and implement system
- Estimate area and performance

FPGA Implementation
- Verification and optimization
- Port host bridge to other architectures
- Off-chip interconnects between FPGAs
- Arithmetic units (eg. mul/add)
- Threads (eg. matrix-vector product)
- Sparse matrix solver
- Cube cut
- Finger print and iris code matching

Example: k-th Nearest Neighbor Thinning

Algorithm outline
1. Input data: list of vectors v, goal k
2. Calculate all vector's distances
3. Sort the resulting distance table
4. Remove nearest neighbor
5. If |v| > k, goto (1) else return

Conclusion & Future Work

IMORC
- Easy to use core interconnect infrastructure
- Performance counters help identifying performance bottlenecks
- Seamless integration into our modeling approach
- VHDL, avoiding instantiation of vendor specific blocks
- Easily portable between different target architectures

Future Work
- Port host bridge to other architectures
- Off-chip interconnects between FPGAs
- Investigation of suitable IMORC core granularity
- Arithmetic units (eg. mul/add)
- Threads (eg. matrix-vector product)
- Optimizing performance of further accelerators
- Sparse matrix solver
- Cube cut
- Finger print and iris code matching

Contact:
Tobias Schumacher
tobe@uni-paderborn.de
http://www.upb.de/pc2