
OpenCCS User Manual
Version 0.9.8-5

ccs-team@upb.de

Document-Version: October 5, 2021

2

Contents

1 About this Document 11

1.1 State and Completeness . 11

1.2 Audience and Purpose . 11

1.3 Document Organization . 11

1.4 Related Documents . 12

1.5 Typographic Conventions . 13

2 What is OpenCCS 15

2.1 Overview . 15

2.2 Architecture . 15

2.2.1 Command Naming Schema 17

2.2.2 Request States . 17

2.3 Features . 18

2.3.1 Planning Based . 18

2.3.2 Authentication . 19

2.3.3 Authorization . 19

2.3.4 User Roles . 20

2.3.5 Job Trace . 20

2.3.6 Reliability and Fault Tolerance 20

2.3.7 Customizing . 22

2.4 Differences . 22

2.4.1 Validity . 23

2.4.2 Limits . 23

2.4.3 FreePools . 24

3 New Features 25

3.1 New Features in OpenCCS 0.9.8-5 25

3.2 New Features in OpenCCS 0.9.8-4 25

3.3 New Features in OpenCCS 0.9.8-3 26

3.4 New Features in OpenCCS 0.9.8-2 26

3.5 New Features in OpenCCS 0.9.8-1 26

3.6 New Features in OpenCCS 0.9.8 26

3.7 New Features in OpenCCS 0.9.7-5 27

3

4 CONTENTS

3.8 New Features in OpenCCS 0.9.7-4 27

3.9 New Features in OpenCCS 0.9.7 28

3.10 New Features in OpenCCS 0.9.6 28

4 Getting Started with OpenCCS 31

4.1 User Roles . 31

4.1.1 User-Role . 31

4.1.2 Manager-Role . 32

4.1.3 Administrator-Role . 32

4.2 Principle Usage . 32

4.3 Request Types and Identifier 33

4.4 Request States . 33

4.5 OpenCCS Comand Line Interfaces 34

4.5.1 CLI Argument Parsing 34

4.5.2 CLI Default Values . 35

4.6 Setup the OpenCCS Environment 37

4.7 Message of the Day . 38

4.8 Job Priorities . 39

4.9 Job Environment . 39

4.9.1 Boot Node Environment Variables 39

4.9.2 The OpenCCS Node File 41

5 Resources 43

5.1 Resource Categories . 43

5.2 Resource Formats . 44

5.3 Built-In Resources . 46

5.4 Specifying Resources . 46

5.4.1 Syntax . 47

5.4.2 Resource Set / Chunk Specification 47

5.4.3 Placement Specification 48

5.4.4 Job-Wide Resources 49

5.4.5 Specifying Resource Values 49

5.4.6 Examples . 49

5.5 Resource Assignment to Jobs 51

5.5.1 Default and Force Resources 51

5.5.2 Matching Unset Resources 51

5.6 Resources and Limits . 52

5.6.1 Limit Enforcement . 52

5.6.2 Limits on Exclusively Used Nodes 53

5.6.3 Resource Credits . 53

CONTENTS 5

6 Submitting Jobs 55

6.1 Introduction . 55

6.2 Script Jobs . 55

6.2.1 Submitting a Job Script 55

6.2.2 Changing the Job’s CCS Directive 56

6.2.3 Passing Arguments to Job Scripts 57

6.2.4 Jobs Without a Job Script 57

6.3 Interactive Jobs . 57

6.3.1 The Virtual Terminal 57

6.4 Background Jobs . 58

6.5 Job Submission Options . 58

6.5.1 Time Related Attributes 59

6.5.2 Request Name . 60

6.5.3 Email Notification . 60

6.5.4 Email Recipients . 61

6.5.5 Job Notification . 61

6.5.6 Input, Output and Error Files 62

6.5.7 Job Trace File . 63

7 Predicting Job Start Times 65

7.0.1 Resource Syntax . 65

7.0.2 Iterator Syntax . 65

7.0.3 Examples . 67

8 Checking Job and System Status 69

8.1 Schedule Status . 69

8.1.1 Summary . 69

8.1.2 Job Distribution . 70

8.1.3 Filtering the Data . 70

8.1.4 Formatting the Output 71

8.1.5 Examples . 73

8.2 System Status . 73

8.2.1 Node Status . 73

8.2.2 Available Workers . 76

8.2.3 Allocatable Resources 77

8.2.4 FreePools . 78

8.3 Group / User Related Infos 79

8.3.1 Group Membership 79

8.3.2 Limits and Privileges 79

8.3.3 Default and Force Values 80

8.3.4 Used Resources . 81

8.4 Request Status . 81

6 CONTENTS

9 Working with OpenCCS Jobs 83

9.1 Altering Scheduled Requests 83

9.2 Holding / Resuming Jobs . 85

9.3 Sending Signals to Jobs . 85

9.4 Sending Messages to Jobs . 86

9.5 Deleting Requests . 86

10 Reservations 87

10.1 Submitting a Reservation . 87

10.2 Using a Reservation . 88

10.3 Altering a Reservation . 88

10.4 Deleting a Reservation . 88

11 Job Arrays 89

11.1 Introduction . 89

11.2 Glossary . 89

11.3 Identifier Syntax . 90

11.3.1 Examples . 90

11.4 Environment Variables set by OpenCCS 91

11.5 Limits . 91

11.6 Submission . 91

11.7 File Naming . 91

11.8 Tracefiles . 92

11.9 Exit Status . 92

11.10Checking Status . 92

11.11Altering . 93

11.12Holding/ Resuming . 94

11.13Killing . 94

11.14Signalling . 94

11.15Sending Messages . 94

11.16User Notification . 94

11.17Job Arrays in Reservations 95

A ccsalloc Man Page 97

A.1 SYNOPSIS . 97

A.2 DESCRIPTION . 97

A.2.1 Script Jobs . 97

A.2.2 Jobs Without a Job Script 98

A.2.3 Simple Jobs . 98

A.2.4 Interactive Jobs . 98

A.2.5 Reservations . 98

A.2.6 Job Arrays . 98

A.2.7 Specifying Resources 99

A.3 OPTIONS . 100

CONTENTS 7

A.4 KEYWORDS USABLE AT REDIRECTION 104

A.5 THE VIRTUAL TERMINAL 105

A.6 EXIT STATUS . 105

A.7 ENVIRONMENT . 105

A.8 Job Environment . 106

A.8.1 The Node File . 106

A.8.2 Execution Host Environment Variables 107

A.9 FILES . 108

A.10 EXAMPLES . 108

A.11 SEE ALSO . 109

A.12 AUTHORS . 109

B ccsalter Man Page 111

B.1 SYNOPSIS . 111

B.2 DESCRIPTION . 111

B.3 OPTIONS . 111

B.4 KEYWORDS USABLE AT REDIRECTION 115

B.5 WHAT CAN BE WHEN ALTERED 116

B.6 EXIT STATUS . 116

B.7 ENVIRONMENT . 117

B.8 FILES . 117

B.9 SEE ALSO . 117

B.10 AUTHORS . 117

C ccsbind Man Page 119

C.1 SYNOPSIS . 119

C.2 DESCRIPTION . 119

C.3 OPTIONS . 119

C.4 EXIT STATUS . 120

C.5 ENVIRONMENT . 120

C.6 FILES . 121

C.7 SEE ALSO . 121

C.8 AUTHORS . 121

D ccsinfo Man Page 123

D.1 SYNOPSIS . 123

D.2 DESCRIPTION . 123

D.3 GENERAL OPTIONS . 123

D.4 SCHEDULE STATUS . 124

D.5 SYSTEM STATUS . 127

D.5.1 Node Status . 127

D.5.2 Available Workers . 130

D.5.3 Allocatable Resources 130

D.5.4 FreePools . 132

8 CONTENTS

D.6 GROUPS / USERS . 133

D.6.1 Group Membership . 133

D.6.2 Limits and Privileges 133

D.6.3 Default Values . 134

D.6.4 Used Resources . 134

D.7 REQUEST STATUS . 135

D.8 PREDICTING START TIMES 136

D.8.1 Resource Syntax . 136

D.8.2 Iterator Syntax . 136

D.8.3 Examples . 138

D.9 EXIT STATUS . 138

D.10 ENVIRONMENT . 138

D.11 FILES . 139

D.12 SEE ALSO . 139

D.13 AUTHORS . 139

E ccskill Man Page 141

E.1 SYNOPSIS . 141

E.2 DESCRIPTION . 141

E.3 OPTIONS . 141

E.4 EXIT STATUS . 142

E.5 ENVIRONMENT . 142

E.6 FILES . 143

E.7 SEE ALSO . 143

E.8 AUTHORS . 143

F ccsmsg Man Page 145

F.1 SYNOPSIS . 145

F.2 DESCRIPTION . 145

F.3 OPTIONS . 145

F.4 EXIT STATUS . 146

F.5 ENVIRONMENT . 146

F.6 FILES . 147

F.7 SEE ALSO . 147

F.8 AUTHOR . 147

G ccssignal Man Page 149

G.1 SYNOPSIS . 149

G.2 DESCRIPTION . 149

G.3 OPTIONS . 149

G.4 EXIT STATUS . 150

G.5 ENVIRONMENT . 150

G.6 FILES . 151

G.7 EXAMPLES . 151

CONTENTS 9

G.8 SEE ALSO . 151
G.9 AUTHORS . 151

H ccstracejob Man Page 153
H.1 SYNOPSIS . 153
H.2 DESCRIPTION . 153
H.3 OPTIONS . 153
H.4 EXIT STATUS . 154
H.5 EXAMPLES . 154
H.6 SEE ALSO . 154
H.7 AUTHORS . 154

I ccsworker Man Page 155
I.1 SYNOPSIS . 155
I.2 DESCRIPTION . 155
I.3 OPTIONS . 155
I.4 EXIT STATUS . 155
I.5 EXAMPLES . 155
I.6 SEE ALSO . 156
I.7 AUTHORS . 156

J ccs resource formats Man Page 157
J.1 DESCRIPTION . 157
J.2 Boolean . 157
J.3 Cron . 157
J.4 Datetime . 158
J.5 Size . 159
J.6 String . 159
J.7 String Array . 159
J.8 Timespan . 159
J.9 Unitary . 160
J.10 SEE ALSO . 160
J.11 AUTHORS . 160

K Node States 161

L Node Properties 163

M Glossary 165

10 CONTENTS

Chapter 1

About this Document

1.1 State and Completeness

This document is a general user manual. Therefore, it does not always reflect
the state of the installed release.

1.2 Audience and Purpose

This manual is intended for people using OpenCCS.

1.3 Document Organization

• Chapter 2 gives an overview about the OpenCCS architecture, its fea-
tures, and the differences to queueing based systems. If you are impa-
tient, skip it.

• Chapter 3 describes the new features of the current OpenCCS release.

• Chapter 4 describes how to get started with OpenCCS.

• Chapter 5 describes the resources OpenCCS manages and how to spec-
ify them.

• Chapter 6 describes how to submit jobs to OpenCCS.

• Chapter 8 describes how to get information about the status of nodes,
systems, and jobs.

• Chapter 9 describes how to manage OpenCCS jobs after submission.

• Chapter 10 describes how to reserve resources and how to use them.

• Chapter 11 describes how to use job arrays.

11

12 CHAPTER 1. ABOUT THIS DOCUMENT

• A description of OpenCCS specific items can be found in the glossary
(Appendix M).

1.4 Related Documents

• http://openccs.eu: online documentation.

• The OpenCCS man pages

http://www.openccs.eu

1.5. TYPOGRAPHIC CONVENTIONS 13

1.5 Typographic Conventions

This document uses the following typographic conventions:

• Important items are marked by a small box at the margin (e.g. FOO). FOO

They also appear in the index.

• Function and variable names, examples of screen output, names of
directories, files, and file contents appear in monospace type.

In addition the following symbols appear in command syntax definitions,
both in the documentation and in OpenCCS online help statements. When
issuing a command, do not type these symbols.

Square brackets []
Surround optional parameters.

Angle brackets < >
Surround user-supplied values in OpenCCS commands.

Pipe symbol |
In a command syntax statement separates mutually exclusive
values for an argument.

Percent sign %
Represents the regular command shell prompt. Some operating
systems possibly use a different character for this prompt.

Number sign #
Represents the command shell prompt for the local superuser
root. Some operating systems possibly use a different character
for this prompt.

14 CHAPTER 1. ABOUT THIS DOCUMENT

Chapter 2

What is OpenCCS

2.1 Overview

The Computing Center Software is a completely planning based Workload
Management system (WLM). It has been initially designed to serve two WLM

purposes: For HPC users it should provide a homogeneous interface to a
pool of different HPC systems. For system administrators it should provide
a means for describing, organizing, and managing HPC systems that are
operated in a computing center. Hence the name ”Computing Center Soft-
ware”, CCS for short. CCS is released under the terms of the GNU General
Public License. Therefore, it is also called OpenCCS.

2.2 Architecture

OpenCCS consists of several modules, which may run on multiple hosts to
improve the response time. OpenCCS is based on events (e.g., timers, mes-
sages, signals), and the communication is stateless and asynchronous. The
modules are multi-threaded but single-tasked. The submission syntax and
resource description is strongly PBSPro compatible to ease the integration
of commercial applications.

Figure 2.1 depicts the OpenCCS modules (described below) and the
event handling.

User Interface(UI)
Provides a single access point to one or more systems via a
Command Line interface.

Access Manager(AM)
Manages the user interfaces and is responsible for authentica-
tion, authorization, and accounting.

Planning Manager(PM)
Schedules and maps the user requests onto the machine.

15

16 CHAPTER 2. WHAT IS OPENCCS

Figure 2.1: The OpenCCS modules (left) and event type handling (right)

Machine Manager(MM)
Provides machine specific features like node management or job
controlling.

Island Manager(IM)
Provides OpenCCS internal name services and watchdog facil-
ities to keep the island in a stable condition.

Operator Shell(OS)
Is the main interface for system administrators to control Open-
CCS, e.g. by connecting to the system modules.

Node Session Manager(NSM)
Runs with root privileges on each node managed by OpenCCS.
The NSM is responsible for node access and job controlling. At
allocation time, the NSM starts an EM for each job.

Execution Manager(EM)
Establishes the user environment (UID, shell settings, environ-
ment variables, etc.) and starts the application.

2.2. ARCHITECTURE 17

2.2.1 Command Naming Schema

• All user commands start with ccs.

• All graphical user commands start with ccsx.

• All administrator commands start with ccs .

• All graphical administrator user commands start with ccs x.

2.2.2 Request States

A request (i.e., a reservation or a job) in OpenCCS may enter these states.

PLANNING The scheduler is assigning a start time to the request.

PLANNED The scheduler has successfully assigned a start time to the re-
quest.

ALLOCATING
The resources assigned to the request are currently initialized.

ALLOCATED
The resources assigned to the request are ready for work. The
following substates are possible for jobs:

PREPROC Preprocessing

EXEC Job is running

ACCOUNTED
Job has accounted

POSTPROC
Postprocessing

KILL Job is killed

STOPPING The resources assigned to the request are being released.

STOPPED The resources are released. Job related data will be avail-
able for users for an administrator defined interval (often 30m)
before OpenCCS removes the job completely. The command
ccstracejob may be used to print job data if the job has been
removed in the CCS runtime database.

WAITING The request is in a “waiting room” because OpenCCS is not
able to assign a start time. This state is reached for two resaons:

1. If resources become unavailable while a request is in state
PLANNED. In such a case the request keeps its place
in the schedule because the resources may become avail-
able again before switching to state ALLOCATING. If not

18 CHAPTER 2. WHAT IS OPENCCS

enough resources available, OpenCCS tries to replan the
request. If this is not possible, the request state switches to
WAITING. If the resources become available again, Open-
CCS automatically tries to replan waiting requests.

2. The job has been held via ccsalter. Refer to 9.2. The
following substates are possible for held jobs:

HOLD BY USER
The job has been held by the job owner.

HOLD BY GROUP MANAGER
The job has been held by a group manager.

HOLD BY GROUP ADMIN
The job has been held by the OpenCCS ad-
ministration.

2.3 Features

2.3.1 Planning Based

Queuing based WLMs mainly try to utilize currently free resources with
waiting resource requests. Resource planning for waiting requests is often
not done/possible.

Planning based systems in contrast plan for the present and future.
Planned start times are assigned to requests and a schedule about the future
resource usage is computed and made available to the users. This approach
has some important implications:

• There are no explicit queues in OpenCCS.

• Users are supposed to specify the expected runtime of their requests.
If no duration is specified, OpenCCS assigns a site specific one.

• Authorization and limitation is attached to groups and / or users.

• OpenCCS requires the users to specify the expected runtime of their
requests.

• Entities (e.g., user, group, resource, limit, or FreePool) may have a
validity. If the validity is exceeded, the entity is disabled.

Advance Reservations All users can reserve resources for a given period
of time in advance. After planning the request, the user is guaranteed ac-
cess to the reserved resources. Jobs can then be submitted to the reserved
resources. The administrator may deny the reservation privilege. Refer to
chapter 10 for more detailed information.

2.3. FEATURES 19

Specifying Start Times One can specify when exactly a job should start
or the time after which the job is eligible for execution. Refer to section 6.5.1
for more detailed information.

Deadlines Batch jobs can be submitted with a deadline. Once a job has
been accepted, OpenCCS guarantees the job to be completed at (or before)
the specified time. Refer to section 6.5.1 for more detailed information.

Showing Planned Start Times The OpenCCS command line interface
shows the estimated start time of interactive requests directly after the sub-
mitted request has been planned. In case of an interactive job, this output
is updated whenever the schedule changes significantly. Refer to chapter 8
for more detailed information.

Limits Limits are related to resources and a consumer and have a va-
lidity. Resource is the name of a resource class (e.g. ncpus). Consumer is
either a user or a group. User limits may overwrite group limits.

Job Notification X minutes before the maximum runtime ends, Open-
CCS may send a signal to the job or may start an executable. Refer to 6.5.5
for more detailed information.

2.3.2 Authentication

When requesting resources, users must specify a group name. A group group

may be a UNIX/LDAP group or an inner OpenCCS group. Users may be
member of several groups at the same time. OpenCCS checks if the user is
member of the group and if the validity of group and user is OK.

2.3.3 Authorization

Authorization in OpenCCS is group and user based. One has to specify a
group at submit time. Limitations and privileges can be granted to either a
whole group or to group members. Examples are:

• Privileges (e.g., allocate-/reserve/change resource requests)

• Maximum number of concurrently used resources

• Maximum allowed time of resource usage

20 CHAPTER 2. WHAT IS OPENCCS

2.3.4 User Roles

OpenCCS allows certain privileges based on what role a person has. Open-
CCS recognizes only three roles, and all those using OpenCCS must be
assigned at least one of these roles. The roles are User, Manager, and
Administrator. Roles are assigned by OpenCCS-Owner only (via %ISLAND -

AAL FILE). No roles can be added, and roles cannot be modified; the function
of roles is hardcoded in the servers.

Resource Credit Management The operator may assign resource ”cred-
its“ for any consumable resource to a consumer. (e.g. 200 cpu hours or 100
GPU hours). After consuming the credit, OpenCCS denies resource reser-
vation or job allocation.

2.3.5 Job Trace

A user may specify a path to a trace file at submission time. OpenCCS
then writes all state changes into this file. Example 2.3.1 depicts such a file.
Additionally, using ccstracejob) users may print log and accounting data
of completed jobs (H).

2.3.6 Reliability and Fault Tolerance

Before allocating a node, OpenCCS may check its integrity (e.g. disk space,
network, memory, processes, ...). If the check fails OpenCCS tries to fix
the problem. If this is not possible, the allocation fails, the user is notified,
and the operator gets an e-mail describing what went wrong. Additionally,
OpenCCS may perform a post-processing after each job.

Automatic Disabling of Defect Nodes On workstation clusters, all
nodes are frequently checked. If OpenCCS detects that a node of the man-
aged machine does not answer in time, it tries to reconnect. If this is not pos-
sible, this node is automatically marked offline. Concerned jobs are stopped
and OpenCCS sends an email to the user and the operator describing the
problem.

Alive Checks All OpenCCS modules are sending “”heartbeat“” messages
to their communication partners. When a OpenCCS module detects a break-
down while communicating with another module, it closes the connection to
this module and requests the IM to re-establish the link.

For recovery, each OpenCCS module periodically saves its state. At
boot time the modules read their information and synchronize with their
communication partners.

2.3. FEATURES 21

Format is: <reqID> <date> <time> <event> [result code]

<additional information>

3 2012-04-11 14:37:14 +0200 REQUEST_PLANNED

Planned start is: 22:00:00

3 2012-04-11 14:38:44 +0200 REQUEST_ALTER

Altered: start,,1,nrset,ncpus=1:vmem=1m,2

3 2012-04-11 14:38:45 +0200 RESOURCE_AVAILABLE

Nodes: kel-ubuntu910

3 2012-04-11 14:38:45 +0200 JOB-START

shell sleep 1000

3 2012-04-11 14:41:47 +0200 JOB-OVER-LIMIT

Killing the job: vmem 3236k exceeded limit 1024k on

host kel-ubuntu910

3 2012-04-11 14:41:47 +0200 JOB-KILL

3 2012-04-11 14:41:49 +0200 JOB-FAILED -1

shell sleep 1000

Exec-host :kel-ubuntu910

Exit Status :terminated due to signal 1(SIGHUP)

Used CPU-time :

Used mem :1896k

Used vmem :7696k

Used walltime :7s

3 2012-04-11 14:41:49 +0200 RESOURCE_RELEASED

job terminated

Example 2.3.1: A job trace file

22 CHAPTER 2. WHAT IS OPENCCS

Virtual Terminal Interactive applications are not stopped when the con-
nection between the user interface and the application has been broken (e.g.
due to a frontend failure). STDIN, STDOUT and STDERR will be redi-
rected to specified files. It is possible to re-bind to a running interactive
session.

2.3.7 Customizing

Worker Concept Cluster systems comprise nodes with full operating
system capabilities and software packages like debuggers, performance ana-
lyzers, numerical libraries, and runtime environments. Often these software
packages require specific pre and post-processing. OpenCCS supports this
with the so-called worker concept. s are tools to start jobs under specific run-
time environments. They hide specific procedures (e.g. starting of a daemon
or setting of environment variables) and provide a convenient way to start
and control programs. A worker’s behavior is specified in a configuration
file.

The gaussian worker may serve as an example to illustrate what can
be done with a worker: It checks whether Gaussian should run in parallel.
If so the worker copies the gaussian worker file and inserts the necessary
LINDA directives to start the job in parallel. Before starting the job, a host
file is generated and the user’s environment is extended by all environment
variables required by gaussian. After the job has terminated, the worker
cleans up all.

Adapting to the Local Environment Since OpenCCS is able to ma-
nage heterogeneous systems it is possible that the process environment may
differ on the UI host and on the compute node. OpenCCS copes with
problems like this by modifying the process environment of an application
before starting it. Environment variables like PATH will be explored and
modified with respect to the host name. This is done in the UI and in the
EM.

2.4 Differences

OpenCCS needs a shared file system. It does not stage-in / stage-out ex-
ecutables or in-/out-put data to or from nodes. All nodes, frontends, and
management nodes have to be connected to a shared filed system.

Since OpenCCS has no explicit queues things like default values, resource
limits, or authentication are handled differently. In the follwowing the terms
validity, limit, and FreePool are explained in more detail.

2.4. DIFFERENCES 23

2.4.1 Validity

Specifies the time period in which an entity is valid. It can be given as:

Date Specifies an absolute end-date. Given as Datetime.
E.g. 15:00:31.12.2015.
If time is not given, it is assumed as 23:59:59.

Date1 - Date 2

Specifies an absolute start- and an absolute end-date, both
given as Datetime.
E.g. 15:00:01.01.2012 - 31.12.2015.
If time1 is not given, it is assumed as 00:00:00 If time2 is not
given, it is assumed as 23:59:59

Cron Specifies repeated intervals. Given as Cron. If Cron is given,
Date1 or Date1 - Date2 may specify the interval in which the
cron is valid.

2.4.2 Limits

If a consumer has no limit assigned this means all resources are available
forever. A consumer must not have more than one limit per resource. Ex-
ception of the rule: A ’*’ limit can be overwritten by a specific resource
limit. A limit consists of the following items:

validity The validity period of a limit (section 2.4.1).
Defaults to no validity which means limit is always valid.

items The maximum number of allocatable items.
Syntax: <min[/max]>
min is of type size and max specifies the percent of currently
available items. If both given, OpenCCS takes the maximum
of min,max. Example: 30/45% denotes a limit 30 items or 45%
of the available items. The default-value is no limit.

duration The maximum timespan the resource may be used.
Default value is no limit.

area The maximum area in the complete schedule.
Given as duration*count. The area may be given as an ab-
solute value or as float value. In the latter case the limit is
computed at runtime:
limit ::= <value> * duration-limit * item-limit

If the limit is exceeded, the job will be accepted but placed
in the waiting room (i.e., not planned). Such jobs will be re-
planned as soon as the limit allows. Default value is no area
limit.

24 CHAPTER 2. WHAT IS OPENCCS

credit Defines a resource credit given as area.
Default value is infinite credit.

If a time dependent limit is exceeded, the affected request will be scheduled
to a later or earlier slot (depending on the request type).

2.4.3 FreePools

FreePools are like limits, but describe the conditions for resources to be kept
free (i.e., they constrain the access to resources). A FreePool consists of the
following items:

NAME The name of the FreePool.

WHAT The name of the resource to be kept free.
’*’ means all resources.

QUANTITY
How many of WHAT should be kept free.
The maximum number of allocatable items.
Syntax: <min[/max]>
min is of type size and max specifies the percent of currently
available items. If both given, OpenCCS takes the maximum
of min,max. Example: 30/45% denotes 30 items or 45% of the
available items.

ALLOWED Specifies the conditions to get access to WHAT.
4 conditions which may be logically connected

1. GROUP: A comma seperated lists of groups.

2. USER: A comma seperated lists of acounts.

3. COUNT: The maximal number of requested items.

4. DURATION: The maximal allowed duration.

VALIDITY The validity period of the FreePool(section 2.4.1).
Defaults to no validity which means the FreePoolis always valid.

Two examples may show what can be done with a FreePool:

• Keep free 20 percent of the available CPUs but at minimum 10 CPUs
for jobs which request less than 4 CPUs for less than 1h.

• Keep all nodes owned by X free for the groups P1 andP2 and user
alice. All others may use the nodes only for a maximum of 2 hours.

Chapter 3

New Features

3.1 New Features in OpenCCS 0.9.8-5

• ccsinfo –usedres [-g GROUP]. Shows currently used resources of the
related group. Refer to 8.3.4 for more details.

• Placeholder %x. The placeholder %x will be replaced by the job name
if specifying redirection or trace file name. Refer to 6.5.6. for more
details.

• ccstracejob. Allows users to trace log- and accounting-data of com-
pleted jobs. Refer to H for more details.

• Manager Role. Managers have more privileges than users, and less
privileges than administrators. Managers are assigned to groups within
CCS. A group can have more than one manager. Refer to 4.1 for more
details.

• Hold / resume. A user may put a request in state hold, which means it
is ignored in planning. Altering to state resume, will enable planning
again. Refer to 9.2 for more details.

• Exclude hosts from mapping (place=:ignore=h1) Refer to 5.4.3.

• Background Jobs. These are jobs, which have assigned the lowest
priority. Refer to 6.4 for more details.

3.2 New Features in OpenCCS 0.9.8-4

• The OpenCCS administration may assign credits to a consumer (group
or user) for any consumable resource. If a credit is consumed, Open-
CCS will (depending on the specified policy):

25

26 CHAPTER 3. NEW FEATURES

– Deny resource reservation or job allocation for all jobs requesting
such resources.

– Set the job priority to the “background job” priority.

– Do nothing.

Users can inspect their current credits and the active policy. Refer to
5.6.3 for more details.

3.3 New Features in OpenCCS 0.9.8-3

• The OpenCCS administration may enable a policy for dynamic par-
titioning of nodes to enforce the mapping of “small jobs“ to specific
nodes to increase the likelyhood for large jobs to start.

• New ccsinfo format specifier %a. It shows job attributes. Each
printed letter stands for a attribute. Refer to section 8.1.4 for more
details.

• Predicting which resources are when available. Refer to chapter 7.

3.4 New Features in OpenCCS 0.9.8-2

• place=group=<resource>. Refer to 5.4.3.

• Node specific access control lists (ACLs). Refer to Appendix:L .

3.5 New Features in OpenCCS 0.9.8-1

• Support for multiple guest devices on a host (GPU, PHI, FPGA, ...).
NSM maps the jobs to the guest devices and EM and ccsattach set the
appropriate environment variables (e.g., CUDA_VISIBLE_DEVICES).

• Island specific uirc files. Refer to 4.5.2.

• Admin may change the enforcement of job limits to none, all, or hybrid.

3.6 New Features in OpenCCS 0.9.8

• Job-Arrays to run almost identical jobs.
Refer to section 11 for more details.

• ccsinfo -s --fmt=%c shows core usage and it’s efficiency. Refer to
section 8.1.4 for more details.

• ccsinfo <reqID> shows resource usage for each used node.

3.7. NEW FEATURES IN OPENCCS 0.9.7-5 27

3.7 New Features in OpenCCS 0.9.7-5

• Automatic setting of job-priorities related to resource requirements.
Priorities are divided in 4 classes: best-effort, deadline, fix start time,
and reservations. In each class the priority may be increased if

– the job requests ”expensive resources” (i.e. chunks with many
cores),

– the job is parallel (i.e., requests a lot of cores),

– the job requests a high priority resource specified by the admin-
istration (i.e., a GPU card).

At backfill the jobs are processed by their priority in descending order.
At replan (e.g., due to a resource outage or an admin command) jobs
with lower priority are displaced. The priority of displaced jobs is
incremented to avoid starving.

• Node specific minimum resources.
The administrator may specify minimum resource amounts and/or a
maximum duration which have to be requested at least by a job to be
mapped on that node.

• ccsinfo -s --fmt=%q shows priority. Refer to section 8.1.4 for more
details.

• ccsinfo -n --fmt=%p shows node properties. Refer to section 8.2.1
and appendix L for more details.

• ccsinfo -n --fmt=%m shows the node specific minimum resource lim-
its. Refer to section 8.2.1 and appendix L for more details.

• Faster scheduler.

3.8 New Features in OpenCCS 0.9.7-4

• Matching Unset Resources.
Refer to section 5.5.2 for more details.

• Increasing the walltime of running jobs is possible via ccsalter.

• Administrator may specify a limit with respect to alter walltime.
This limit is checked for running jobs.

• Administrator may specify a job count limit to a group or user.

• Administrator may specify attributes which overwrite the user given
ones. Refer to section 5.5.1 for more details.

28 CHAPTER 3. NEW FEATURES

• ccsinfo -l --user=ALL shows limits of all specified users in the group.
Refer to section 8.3.2 for more details.

• ccsinfo -s --dist=FILTER shows job distribution.
Refer to section 8.1.2 for more details.

• ccsinfo -s --fmt=%v shows elapsed time.

• ccsinfo -s --fmt=%d shows elapsed time in percent of max. dura-
tion.

3.9 New Features in OpenCCS 0.9.7

• Default memory is now per core instead of chunk.
Refer to section 5.5.1 for more details.

• Support for Intel-Xeon-Phi cards
Users may request Intel-Xeon-Phi cards in native mode. For example
in MPI applications.

• Increasing duration of running jobs may displace planned best effort
jobs.

• ccsinfo -n --fmt=%O

Added nodes uptime specifier %O. Refer to section 8.2.1 for more de-
tails.

• ccsinfo -s --dist

Shows job distribution for users / groups, i.e., how many jobs are in
which state. Refer to section 8.1.2 for more details.

3.10 New Features in OpenCCS 0.9.6

• ncpus limit enforcement
The NSM now observes that a job will not use more ncpus than re-
quested. Refer to section 5.6.1 for more details.

• Option --fmt to ccsinfo -s and ccsinfo -n

Using the option --fmt one can specify which information should be
shown, the field format. and their order. Refer to section 8.1.4 and
section 8.2.1 for more details.

• Option --raw to ccsinfo -s and ccsinfo -n

Using the option --raw prints the fields in a raw format: No head-
line, no field formatting. Fields are separated by blanks. Refer to
section 8.1.4 and section 8.2.1 for more details.

3.10. NEW FEATURES IN OPENCCS 0.9.6 29

• Option --reqid to ccsinfo -n

Prints information about nodes assigned to request reqID. Refer to
section 8.2.1 for more details.

• ccsinfo -s accepts reqIDs as a filter.
E.g., ccsinfo -s 123 456 prints info only for the requests with reqID

123 or 456.

30 CHAPTER 3. NEW FEATURES

Chapter 4

Getting Started with
OpenCCS

This chapter introduces the different OpenCCS user interfaces and some
basic concepts like request types. It also explains how the OpenCCS user
interface can be configured and describes the environment variables set for
jobs.

4.1 User Roles

OpenCCS allows certain privileges based on what role a person has. Open-
CCS recognizes only three roles, and all those using OpenCCS must be
assigned at least one of these roles. The roles are User, Manager, and
Administrator.

4.1.1 User-Role

Users are those who submit jobs to CCS. Users have the lowest level of
privilege. Users are referred to in the CCS documentation as users. Users
may operate only on their own jobs. They can do the following:

• Submit jobs,

• alter their jobs,

• send messages or signals to their jobs,

• hold, resume, or kill their jobs,

• get all information about their jobs.

31

32 CHAPTER 4. GETTING STARTED WITH OPENCCS

4.1.2 Manager-Role

Managers have more privileges than users, and less privileges than Admin-
istrators. Managers are assigned to groups. A group can have more than
one manager. ccsinfo -l prints the group managers. Managers can do the
following:

• Run any command on jobs owned by their group (ccsalter, ccsbind,
ccsinfo, ccskill, ccsmsg, ccssignal, ccstracejob).
Note: ccskill --all will only kill jobs owned by the caller. The
Manager privilege is ignored if using “--all”.

4.1.3 Administrator-Role

Administrators can do all operations that Managers can perform for all
groups . The OpenCCS CLI knows the option --admin. If this option is
given the CLI checks if the calling user is a known OpenCCS administrator.
The AM logs all connections of an Administrator user interface.
Note: ccskill --all will only kill jobs owned by the caller. The Admin-
istrator privilege is ignored if using “--all”.

4.2 Principle Usage

You specify the tasks you want to execute and OpenCCS takes care of
running these tasks. You may create a batch job file (i.e. a shell scriptbatch job

file) and submit it to OpenCCS. This file includes the set of commands you
want to execute and directives specifying the characteristics of the job and
its resource requirements. Here is a small example:

#! /bin/sh

#CCS -s 17:00:23.04.2015

#CCS -t 4h

#CCS --res=rset=4:mem=400M:ncpus=4

./my_application

ccsworker ompi my_MPI

Example 4.2.1: A simple job script

You may also submit executables directly or by using a worker. By
default, submitted jobs run in batch mode. However, you may run them in
interactive mode, as well. You may also request an interactive shell on a
node. Resources can be reserved in advance and jobs might be submitted to
these resources. Access to reserved resources may be granted to other users
or groups. All details are explained in chapter 6.

4.3. REQUEST TYPES AND IDENTIFIER 33

4.3 Request Types and Identifier

OpenCCS knows three types of “requests”:

1. Jobs: Are commands running on requested resources.

2. Job Arrays: Are used to group closely related work into a set which
can be processed as a unit.

3. Reservations: Users may reserve resources in advance and then submit
jobs or job arrays to them.

Users may assign a name to a request in the submission. Please, note that
request names are not unique.

After accepting a submitted request OpenCCS assigns a unique numer-
ical identifier to the request. The so called request-ID or reqID. reqID

All commands related to an accepted request use a request identifier to
identify a request. For this purpose one may use the reqID, the request
name, or, in case of a job array subjob, a subjob identifier (SJID). All
CLI commands know the option --all. It means: all owned requests. For
example ccskill --all kills all my requests.

4.4 Request States

A request (i.e., a reservation or a job) in OpenCCS may enter these states.

PLANNING The scheduler is assigning a start time to the request.

PLANNED The scheduler has successfully assigned a start time to the re-
quest.

ALLOCATING
The resources assigned to the request are currently initialized.

ALLOCATED
The resources assigned to the request are ready for work. The
following substates are possible for jobs:

PREPROC Preprocessing

EXEC Job is running

ACCOUNTED
Job has accounted

POSTPROC
Postprocessing

KILL Job is killed

STOPPING The resources assigned to the request are being released.

34 CHAPTER 4. GETTING STARTED WITH OPENCCS

STOPPED The resources are released. Job related data will be avail-
able for users for an administrator defined interval (often 30m)
before OpenCCS removes the job completely. The command
ccstracejob may be used to print job data if the job has been
removed in the CCS runtime database.

WAITING The request is in a “waiting room” because OpenCCS is not
able to assign a start time. This state is reached for two resaons:

1. If resources become unavailable while a request is in state
PLANNED. In such a case the request keeps its place
in the schedule because the resources may become avail-
able again before switching to state ALLOCATING. If not
enough resources available, OpenCCS tries to replan the
request. If this is not possible, the request state switches to
WAITING. If the resources become available again, Open-
CCS automatically tries to replan waiting requests.

2. The job has been held via ccsalter. Refer to 9.2. The
following substates are possible for held jobs:

HOLD BY USER
The job has been held by the job owner.

HOLD BY GROUP MANAGER
The job has been held by a group manager.

HOLD BY GROUP ADMIN
The job has been held by the OpenCCS ad-
ministration.

4.5 OpenCCS Comand Line Interfaces

OpenCCS provides a command line interface (CLI). Table 4.1 gives anCLI

overview.
All common UNIX mechanisms for I/O redirection and shell scripts can

be used. All job control signals (ctl-s, ctl-q, ctl-z, ctl-c, ...) are supported
and forwarded to the application if running an interactive job.

4.5.1 CLI Argument Parsing

The OpenCCS CLIs support GNU style command line arguments. The
parsing follows these rules:

• The CLI arguments are the whitespace-separated tokens given in the
shell command used to invoke the program.

• A ”short option” is a single character argument beginning with a hy-
phen delimiter (’-’).

4.5. OPENCCS COMAND LINE INTERFACES 35

Command Purpose

ccsalloc Submit a job or a reservation
ccsalter Alter job(s) / reservations(s)
ccsbind Re-bind an interactive job
ccsinfo Get status information about system, nodes, and jobs
ccskill Delete job(s) / reservation(s)
ccsmsg Send a message to job(s)
ccssignal Send a signal to job(s)
ccstracejob print log / accounting data of completed job(s)
ccsworker Call a OpenCCS worker

Table 4.1: OpenCCS CLI User Commands

• Multiple short options may follow a hyphen delimiter in a single to-
ken if they do not take arguments. Thus, ’-abc’ is equivalent to
’-a -b -c’.

• An option and its argument may or may not appear as separate tokens.
(In other words, the whitespace separating them is optional.) Thus,
’-o foo’ and ’-ofoo’ are equivalent.

• A ”long option” consists of ’--’ followed by a name made of alphanu-
meric characters and dashes. Users can abbreviate the option names
as long as the abbreviations are unique.

• To specify an argument for a long option, write ’--NAME=VALUE’.

• Options may appear only once.

4.5.2 CLI Default Values

For some of the CLI options default values can be specified in the process
environment or in a file. All OpenCCS command line interface commands
may scan for default values.

The File uirc

OpenCCS rc (resource) files are normally located in the director $HOME/.ccsrc.
The file uirc contains default values for the OpenCCS CLI commands.

The file syntax is: ”<name> <value>”. The name prefix is ”CCS_UI_”. A
word beginning with ’#’ and all the following characters up to a NEWLINE
are ignored. The character tilde (’~’) will be replaced with the caller’s
home-directory. One can have an uirc file for each known island. The
CLI commands first try to read $HOME/.ccsrc/uirc.ISLAND_NAME where

36 CHAPTER 4. GETTING STARTED WITH OPENCCS

ISLAND_NAME is derived from the environment variable CCS_UI_DEF_ISLAND.
If such a file does not exist, they search for $HOME/.ccsrc/uirc.

Search Order

If a mandatory value is not specified via a CLI option, the CLI first looks
for a corresponding environment variable. If it does not exist, the CLI tries
to read the corresponding uirc file as described above. If no value is found,
a compile time defined default value will be taken.

Available Default Values

CCS UI ADMIN < ON |OFF >
Activate admin mode.
Defaults to: OFF.

CCS UI BG OUTPUT < path >
Related CLI switch -o.
Defaults to: /dev/null.

CCS UI DEBUG < debug − level >
Related CLI switch --debug.
Defaults to: no debug mode.

CCS UI DEF DURATION < timespan >
Related CLI switch -d.
Defaults to: ’10m’.

CCS UI DEF EMAIL RECIPIENTS < emailaddress, ... >
Related CLI switch --mail.
Defaults to: not specified.

CCS UI DEF GROUP < name >
Related CLI switch --group.
Defaults to: not specified.

CCS UI DEF ISLAND < name >
Related CLI switch -i.
Defaults to: not specified.

CCS UI DEF NOTIFY JOB < signal|command leadtime >
Related CLI switch --notifyjob.
Defaults to: no notification.

CCS UI DEF NOTIFY USER < level >
Related CLI switch --notifyuser.
Defaults to: no notification.

CCS UI DEF NODE FMT < fmt− string >
Related CLI switch ccsinfo -n --fmt.
Defaults to: not specified.

4.6. SETUP THE OPENCCS ENVIRONMENT 37

CCS UI DEF SCHED FMT < fmt− string >
Related CLI switch ccsinfo -s --fmt.
Defaults to: not specified.

CCS UI NOHUP < ON |OFF >
If set to ON it prevents the user-interface to break the con-
nection to a running, interactive job if catching the SIGHUP
signal. The catched signal will be sent to the job instead.
Defaults to: OFF.

CCS UI REQ NAME < name >
Related CLI switch --name.
Defaults to the base name of the job script file or the exe-
cutable specified on the command line. If an interactive shell is
requested, the request name will be set to INT. If a reservation
is requested, the request name will be set to RSV.

CCS UI RC FILE < path >
Specifies an alternative CLI rc file.
Defaults to: $HOME/.ccsrc/uirc. NOTE: Can only be speci-
fied in the environment.

CCS UI WORKER FILE < path >
Specifies an alternative worker configuration file.
Defaults to: $CCS/etc/<island>/worker.conf. NOTE : Needs
admin privileges and can only be specified in the environment.

4.6 Setup the OpenCCS Environment

To use OpenCCS, a user has to modify its environment. Normally, this done
by the site administration which will establish the necessary environment
settings in system files (e.g., /etc/profile.d). Hence, everything should
work. If not, the following settings have to be made.

• Setup the environment variable CCS to the installation dependent Open-
CCS directory.

• Expand the search path by two directories:

1. $CCS/bin

2. $CCS/bin/$CCS ARCH

• Expand the manual search path by the directory: $CCS/man.

ccsgenrcfiles

To ease the installation of a new user, OpenCCS comes with the script
ccsgenrcfiles which may be called by the user and makes the following:

38 CHAPTER 4. GETTING STARTED WITH OPENCCS

• It creates the directory .ccsrc in the user’s home directory.

• It creates the default UI configuration file .ccsr/uirc (refer to sec-
tion 4.5.2).

%ccsgenrcfiles SNF

Your environment has been prepared for using CCS.

This script has:

- created the directory /home/kel/.ccsrc

- created the file /home/kel/.ccsrc/uirc

which sets default values for the CCS

command line user interface

For further information see ccsalloc(1) or

http://openccs.eu

Example 4.6.1: Calling ccsgenrcfiles

4.7 Message of the Day

The administrator can establish a ”message of the day” which is printed by
ccsalloc, ccsalter, ccsbind, ccskill, and ccsinfo like this:

ccskill 23

********* CCS-motd from: Tue Jun,25 2018 18:30 **********

Do not meddle in the affairs of sysadmins, for they are

subtle and quick to anger.

Request 23 will be killed

Request (23 / simul): is stopped

Example 4.7.1: Message of the day

If using the option -q printing of the motd is suppressed. The user can
explicitely print the message of the day by calling ccsinfo --motd.

4.8. JOB PRIORITIES 39

4.8 Job Priorities

OpenCCS jobs have priorities which are assigned automatically. There are
5 priority classes:

0-99 Background jobs (ccsalloc -g background),

100-199 Best-effort and earliest start time (ccsalloc -a),

200-299 deadline jobs (ccsalloc -e),

300-399 fix start time (ccsalloc -s),

400-499 reservations.

In each class the priority is increased if

• the job requests “expensive” resources (e.g., chunks with a lot of cores
or memory,

• the job is running on more than one node,

• the job requests “high priority” resources .

A job’s priority can be printed using ccsinfo. The priority is used at
backfilling and while re-planning a job. At backfill the list of backfilling jobs
is sorted by the priority in descending order. At re-plan jobs with lower
priority are displaced. This happens if

• a job could not be allocated in time due to a system error,

• a use increased the maximum duration of a running job,

• the admin initiates a re-plan for a job using the operator interface.

The priority of a displaced job is automatically increased (if not a back-
ground job) to avoid starving.

4.9 Job Environment

When submitting a job, OpenCCS copies the process environment and re-
builds it on the execution host before starting the job.

4.9.1 Boot Node Environment Variables

CCS additionally sets the following job specific environment variables on
the boot node (M):

CCS Path to the OpenCCS installation.

40 CHAPTER 4. GETTING STARTED WITH OPENCCS

CCS ARCH Defines the local architecture (e.g., LINUX32 or LINUX64). Used
to find an architecture dependent executable.

CCS ARRAY ID

For a subjob, the request-ID of the related job array.

CCS ARRAY INDEX

For a subjob, its index in the related job array.

CCS ISLAND

The island name

CCS MAPPING

A string describing the mapping of the job.
Syntax: hostname:=chunk[+chunk..][,hostname...]
and chunk is: count:name=val[:name=val]
Example: CCS_MAPPING=node01:=1:ncpus=2:mem=4g,\

node12:=1:ncpus=5:mem=180g

CCS NODEFILE

Absolute path of the OpenCCS node file.

CCS NODES A space separated list of the node names of the allocated re-
sources.

CCS REQID The request-ID.

CCS REQNAME

The request name.

CCS TMPDIR

The path of the request specific, node local temporary direc-
tory. At allocation time, CCS creates a node local directory
named <path>/<reqID>. The value of <path> is set by the
CCS administration. This directory can be used by applica-
tions for writing temporary files during runtime. The directory
will be removed automatically when releasing the partition.

CCS UMASK Value of the current umask.

NCPUS For the MPI process with rank 0. Set to the value of ncpus
requested for the last chunk. For other MPI processes, behavior
depends on the MPI implementation.

OMP NUM THREADS

For the MPI process with rank 0. Set to the value of ompthreads.
For other MPI processes, behavior depends on the MPI imple-
mentation. It defaults to the value of ncpus. If you do not
request ompthreads in the last chunk, then OMP NUM THREADS

is set to the value of the ncpus resource of that chunk.

TMPDIR Same as CCS TMPDIR.

4.9. JOB ENVIRONMENT 41

4.9.2 The OpenCCS Node File

OpenCCS creates a file containing the node names allocated to a job. The
file name is stored in the environment variable CCS_NODEFILE. Each node
appears once in a single line. The file will contain the names of the allocated
nodes with each name repeated N times, where N is the number of mpiprocs
specified for all chunks allocated on that node. mpiprocs is the number of
MPI instances per chunk and defaults to 1. The order in which nodes appear
in the node file is the reverse order in which chunks were specified in the
--res=rset directive.

42 CHAPTER 4. GETTING STARTED WITH OPENCCS

Chapter 5

Resources

This chapter describes the OpenCCS resource categories, the units and for-
mats to specify them, the built-in resources, the syntax to request resources,
the resource assignment, and the limit assignment and enforcement. The
chapter ends with examples on how to request resources.

5.1 Resource Categories

All resources managed by OpenCCS are part of at least one of the following
categories:

Built-In Is provided by the RMS as shipped. E.g.: ncpus, mem, vmem,

arch, host, ...

Custom Is not defined in RMS as shipped. It is created by the admin-
istrator.

Node Is made available at the node level and is only usable as chunk
resources.

Job-Wide Is used for requesting floating licenses or other resources not
tied to specific nodes, such as cput and wall time. A job
can request a job-wide resource for the entire job, but not for
individual chunks.

Consumable
Is reduced by being used. Examples are ncpus, licenses, or
mem.

Non-Consumable
Is not reduced through use. Examples are walltime, file,

arch, cput, nice, or boolean resources. For non-consumable
resources such as arch or hostname, OpenCCS matches the
value requested by a job with the value at one or more nodes.

43

44 CHAPTER 5. RESOURCES

Matching a job this way does not change whether or not other
jobs can be matched as well.

Static Is managed by the RMS. Static resources have values that are
fixed until you change them or until the hardware changes.

Dynamic Is not under the control of the RMS, (i.e., can change indepen-
dently).

5.2 Resource Formats

Resources can be specified using the following units and formats.

Boolean A boolean value. Syntax:

• True ::= "t" | "y" | "1" | "yes" | "true"

• False ::= "f"| "n" | "0" | "no" | "false"

Values are not case sensitive.

Cron Specifies a periodic time interval like in a cron job specification.
Syntax: A string of five space separated tokens (a b c d e)

• a is minute: 0-59

• b is hour: 0-23

• c is day of month: 1-31

• d is month: 1-12

• e is day of week: 0-6 (0 is Sun)

Given intervals include both boundaries (e.g., hours 17-22 start
at 17:00:00 and end at 22:59:59. Each token may be:

• a wildcard given as asterisk ’*’, which always stands for
”first-last”

• a comma separated list of time points, e.g. ”2,3,5”

• an interval, e.g. ”3-4”

• a combination of lists and intervals, e.g. ”1,2,4-6”

Not allowed are:

• step values, e.g. ”/2”

• shortcuts like ”@weekly”

• weekday’s name, e.g. ”sun”

5.2. RESOURCE FORMATS 45

Datetime Specifies a Date and/or a time. The following formats are rec-
ognized.

• POSIX format
Syntax: [[[[CC]YY]MM]DD]hhmm[.SS]

– CC is the first two digits of the year (the century),

– YY is the second two digits of the year,

– MM is the two digits for the month,

– DD is the day of the month,

– hh is the hour,

– mm is the minute,

– SS seconds.

Example: 201712131443 denotes Dec 13 14:43 2017.

• OpenCCS format
Syntax: <hh[:mm] | hh:mm:dd.mm[.yy]>

– hh hours from 00 to 23

– mm minutes from 00 to 59

– ss seconds from 00 to 59

– mm months from 01 to 12

– yy years from 00 to 99

Units are not case sensitive.
Example: 14 denotes 14:00 and 14:43:13.12.17 denotes
Dec 13 14:43 2017.

For all Datetime formats, the following is valid: If the month is
not specified, it will be set to the current month if the specified
day is in the future. Otherwise, the month will be set to next
month. If the day is not specified, it will be set to today if
the time is in the future. Otherwise, the day will be set to
tomorrow. For example: specifying at 11:15am a time of 11:10,
will be evaluated as 11:10am tomorrow.

Size Specifies a size (memory, disk,) or a count
Syntax: <number[multiplier]>

• Kilo: k is 210 and K is 103

• Mega: m is 220 and M is 106

• Giga: g is 230 and G is 109

• Terra: t is 240 and T is 1012

Example: 1000K denotes 1000*1000 and 1000k denotes 1000*1024.
Default multiplier is 1.

46 CHAPTER 5. RESOURCES

String A series of alpha-numeric characters without whitespace(s), be-
ginning with an alphabetic character.

String Array
A comma separated list of Strings. The character ’,’ is not
allowed within a String. A resource of type ’string array’ is non-
consumable. A resource request will succeed if request matches
one of the values. A resource request can contain only one
string. A string array resource with one value works exactly
like a string resource.

Timespan The following two formats are recognized:

• [[hours:]minutes:]seconds

Example: 120:12:13 denotes 120 hours, 12 minutes, and
13 seconds.

• [*w][*d[*h[*m]]]]*s

Supported units are:

– w (week) equals to 7 days

– d (day) equals to 24 hours

– h (hour) equals to 60 minutes

– m (minute) equals to 60 seconds

– s (second)

Default unit ist second. The unit order is irrelevant. Ex-
ample: 14d1h12m3s3w denotes 3 weeks, 14 days, 1 hour,
12 minutes, and 3 seconds.

Unitary Specifies the maximum amount of a resource which is expressed
as a simple integer.

5.3 Built-In Resources

Table 5.1 shows a list of resources available on all OpenCCS systems. The
shown units are corresponding to the previous section. The listed shortcuts
can be used directly, instead of using the --res parameter.

5.4 Specifying Resources

This section describes the syntax to specify CCS resources if submitting or
altering requests.

5.4. SPECIFYING RESOURCES 47

Name Shortcut Unit Description

arch String Architecture

cput Timespan cputime

hostname String Hostname

mem Size Physical memory, sets a limit

mpiprocs Unitary Number of MPI instances per chunk (con-
trols hostfile entries). Defaults to 1 if nc-
pus > 0, 0 otherwise.

ncpus -c Unitary Number of CPUs / Cores, sets a limit

exclnodes -n Unitary Number of exclusively used nodes

ompthreads Unitary Number of OpenMP threads (controls
hostfile entries). Defaults to 1

vmem Size Virtual memory. Establishes a per-chunk
limit.

walltime -t Timespan Max. duration

Table 5.1: Always available resources.

5.4.1 Syntax

The user may specify resources by:
ccsalloc --res="resource_name[=value][,resource_name[=value],...]"

resource_name is the name of an allocatable resource (which is generic or
system dependent). ccsinfo will show the allocatable resources.
A resource name:

• Is not case sensitive.

• May include white spaces between ’=’ or ’,’.

• May be a resource set specification, a placement specification, or a job
wide resource specification.

The option --res may be used serveral times. The parameters will be
concatenated.

5.4.2 Resource Set / Chunk Specification

A resource set (also named chunk) specifies a set of resources that have to chunk

be allocated as a unit on one node. Chunks cannot be split across nodes.
Resource sets are specified using the keyword "rset".
Syntax: rset=[N:]chunk[+[N:]chunk...]
If N is not specified, it is set to 1. A chunk comprises one or more res=value
statements separated by a colon. Examples:

• ncpus=2:mem=10g:hostname=Host1

• ncpus=27:vmem=20g:arch=linux+4:acc=fpga

48 CHAPTER 5. RESOURCES

5.4.3 Placement Specification

This specification controls how the chunks are placed on the nodes.
Syntax: place=[arrangement][:sharing][:grouping][:ignore]

• Arrangement is one of free, pack, or scatter.

• Sharing is one of excl or shared.

• Grouping can have only one instance of group=resource.

• Ignore is a ’;’ separated list of hostnames, which should be excluded
from mapping (:ignore=’H1;H2;...’).
Example: 4 chunks each with 1 CPU and 4GB memory, placed any-
where, but exclude the hosts smp05 and phi001:
--res=rset=4:ncpus=1:mem=4g,place=:ignore=’smp05;phi001’

Default is: free:shared All keywords are described in the following table.

Modifier Meaning

free no restriction
pack all chunks must be placed on one node
scatter only one chunk per node
exclusive only this job may use the node
shared this chunk may share the node with other chunks
group group all chunks by the specified resource
ignore exclude these hosts from mapping

Table 5.2: Placement Specification

Grouping on a Resource

One can specify that all of the chunks of a job should run on nodes that
have the same value for a selected resource. To group the chunks this way,
use the following format: place=:group=<resource>
Chunk grouping will be ignored if:

• the OpenCCS administration disabled grouping,

• it is a single host job, i.e., all chunks are mapped to a single host,

• the job is part of a reservation,

• <resource> is

– a job wide resource,

5.4. SPECIFYING RESOURCES 49

– one of cput, hostname, mpiprocs, ompthreads, or walltime.

For example, lets assume there is a resource named switch which re-
flects to which Infiniband switches a node is connected. The value can
be “’s10,s1” at one node, and “’s11,s1” at another node. Then these
nodes can be grouped by place=:group=switch because they share the
string “’s1”. All classes printed by ccsinfo -a --classes can be used for
grouping (except the ones listed above).

Using the method of grouping on a resource, one cannot specify what
the value of the resource should be, only that all nodes have the same value.
If one needs the resource to have a specific value, specify that value in the
description of the chunks.

Depending on the settings of the OpenCCS administration a job will be
rejected at submit time, if no group is found which is large enough.

During mapping OpenCCS tries to fill small groups first.

5.4.4 Job-Wide Resources

Job-wide resources are assigned to the system level and may be used for
requesting floating licenses or other resources, which are not tied to specific
nodes, such as cput or walltime. Job-wide resources can only be requested
outside of an rset statement.
Not allowed are: arch, hostname, mem, ncpus, and vmem.
Syntax: keyword=value[,keyword=value ...] Example: --res=sw=g03

5.4.5 Specifying Resource Values

• Resource values which contain commas, quotes, plus signs, equal signs,
colons, or parentheses must be quoted. The string must be enclosed
in quotes so that the OpenCCS CLI command will parse it correctly.

• If specifying resources via the command line, any quoted strings must
be escaped or enclosed in another set of quotes. This second set of
quotes must be different from the first set, meaning that double quotes
must be enclosed in single quotes, and vice versa.

• If a string resource value contains spaces or shell metacharacters, en-
close the string in quotes, or otherwise escape the space and metachar-
acters. Be sure to use the correct quotes for your shell and the behavior
you want.

5.4.6 Examples

No resource specifcation
If you do not specify a resource, the CLI will request:
rset=1:ncpus=1,place=free:shared

50 CHAPTER 5. RESOURCES

CPUs Free placement of 10 CPUs across nodes:
--res="rset=10:ncpus=1"

There is a ccsalloc short cut: ccsalloc -c <number of cores>

Chunks • 4 chunks each with 1 CPU and 4GB memory, placed any-
where, but exclude the hosts smp05 and phi001:
--res="rset=4:ncpus=1:mem=4g,place=:ignore=smp05;phi001"

• 4 chunks each with 1 CPU and 4GB memory each of them
in a separate node:
--res="rset=4:ncpus=1:mem=4g, place=scatter"

• 4 chunks each with 1 CPU and 4GB memory placed in
only one node:
--res="rset=4:ncpus=1:mem=4g, place=pack"

• 4 chunks each with 1 CPU and 4GB memory placed on
host FOO:
--res="rset=4:ncpus=1:mem=4g:hostname=FOO"

Nodes • Nodes a and b exclusively:
--res="rset=hostname=a+hostname=b, place=free:excl"

• 4 nodes exclusively:
--res="rset=4:ncpus=1,place=scatter:excl"

There is a ccsalloc short cut:
ccsalloc -n <number of nodes>

MPI-Jobs • 10-way MPI-Job each with 2GB:
--res="rset=10:ncpus=1:mem=2g"

• 4 chunks, each with 6 CPUs with 3 MPI processes, each
on a separate host:
--res="rset=4:cpus=6:mpiprocs=3, place=scatter"

• 2 chunks, each with 8 CPUs and 8 MPI tasks and four
threads:
--res="rset=2:ncpus=8:mpiprocs=8:ompthreads=4"

Networks Nodes with Infiniband HCAs (provided this custom resources
are specified):
--res="rset=5:net=IB"

Accelerators
5 CPUS and a NVIDIA card (provided this custom resources
are specified):
--res="rset=1:ncpus=5:gpu=nvidia"

Licenses • 4 chunks each with 1 CPU, 3GB of memory and 1 node-
locked Fluent license. This assumes Fluent is specified as
a node local resource:
--res="rset=4:fluent=1:ncpus=1:mem=3g,place=free"

5.5. RESOURCE ASSIGNMENT TO JOBS 51

• 4 chunks each with 1 CPU, 3GB of memory and 4 float-
ing Fluent licenses. This assumes Fluent is specified as a
consumable, global dynamic resource.:
--res="fluent=4,rset=4:ncpus=1:mem=3g,place=free"

Scratch File System
100G ccratch space and 3 chunks, each with 1 CPU and 10GB
of memory. Scratch is assumed to be on a file system common
to all hosts.
--res="scratch=100g, rset=3:ncpus=1:mem=10g"

5.5 Resource Assignment to Jobs

5.5.1 Default and Force Resources

The administrator may define default and force resources for system, group,
and user level. They are assigned in the following order: user, group, system.
First match wins.

Default attributes are assigned if the user did not specify the resource in
question. Force attributes overwrite the user given ones or act as a default
value. If both a default and a force attribute have been specified, the force
attribute will be taken. The command ccsinfo --def (section 8.3.3) shows
the default and force values specified by the administrator.

mem and vmem

OpenCCS assigns default values for the resources mem and vmem, even if
there were no defaults specified by the administrator. The amount is set to
the minimum amount per core over all hosts and is adapted automatically
if nodes became (un)available.

The default values are shown in the column Default of the command
ccsinfo -a (section 8.2.3) . OpenCCS sets the missing value in a chunk
to:default*ncpus.
Hence, assuming the following defaults: mem=3g and vmem=4g, the request
--res=rset=1:ncpus=3 will result in ncpus=3, mem=9g, and vmem=12g.

If the user specified only one of mem or vmem, the missing one is set equal
to the specified one. Hence, --res=rset=2:ncpus=3:mem=4g will result in
ncpus=3, mem=4g, and vmem=4g.

5.5.2 Matching Unset Resources

When job resource requests are being matched with available resources,
unset non-consumable resources are treated as follows:

• A numerical resource that is unset on a host is treated as if it were
zero

52 CHAPTER 5. RESOURCES

• An unset Boolean resource is treated as if it were set to False.

• An unset string cannot be matched

• The resources ompthreads, mpiprocs, and nodes are ignored for unset
resource matching.

Examples:

• requesting --res=rset=smp=f

will match all hosts where the resource smp is unset or set to false.

• requesting --res=rset=rack=0

will match all hosts where the resource rack is unset or set to 0.

5.6 Resources and Limits

Resources are allocated to jobs, and some resources such as memory are
consumed by jobs. The scheduler matches requested resources with available
resources. OpenCCS provides built-in resources, and in addition, allows
the administrator to define custom resources which may be consumable.
A consumable resource is one that is reduced by being used, for example,
ncpus, licenses, or mem. A non-consumable resource is not reduced through
use, for example, walltime or a boolean resource.

Jobs have assigned limits on the amount of resources they can use. These
limits apply to how much the job can use on each node (per-chunk limit)
and to how much the whole job can use (job-wide limit). Limits are derived
from both requested resources and applied default resources. If a job’s job
resource limit exceeds the restrictions, it will not be accepted by the server.
If, while running, a job exceeds its limit for a consumable or time- based
resource, it will be terminated.

Job limits are created from the directive for each consumable resource.
For example, ccsalloc --res=rset=2:ncpus=3:mem=4g will have the fol-
lowing job limits set: ncpus=6,mem=8g, and vmem=8g (refer to section 5.5.1).
The command ccsinfo --limits (section 8.3.2) will show the limits as-
signed to a user / group.

5.6.1 Limit Enforcement

For a job, enforcement of resource limits is per NSM. For example, if a job
requests 3 chunks each of which has 1GB of memory, and all chunks are
placed on one host, the memory limit for that job for that NSM is 3GB.
Therefore one chunk can be using 2 GB and the other two using 0.5GB and
the job can continue to run. The NSM polls for resource usage for cput,
mem, vmem, and ncpus each X seconds. The value of X is specified by the
administration.

5.6. RESOURCES AND LIMITS 53

The ncpus limit is checked each poll period. The job is killed if the
following is true:

cput
walltime > ncpus ∗ cpuFactor + percentOver

100

Per default cpuFactor is 1.025 and percentOver is 50. The values can be
changed by the administrator for each node.

A job may exceed its limit for the period between two polling cycles.
Per-process limits are enforced by the operating system kernel. OpenCCS
calls the kernel call setrlimit() to set the limit for the top process (the shell),
and any process started by the shell inherits those limits.

5.6.2 Limits on Exclusively Used Nodes

If the placement directive excl is used, the whole node is assigned to the
user. In this case, the NSM does not poll for resource limits.

5.6.3 Resource Credits

The OpenCCS administration may assign credits to a consumer (group or
user) for any consumable resource (per-chunk or job-wide). A credit is given
as an area (duration*count), e.g., 200 CPU hours.

Resource credits apply to jobs and reservations. Before a job is allo-
cated, OpenCCS checks if there is enough credit available. If not, CCS will
(depending on the specified policy):

• Reject the job and the user will get a related message.
Example:

Resource ’tesla’:credit exceeded:’

requested(100:00:00) > remaining(99:57:00)’

• Set the job priority to the “background job” priority. This is the lowest
priority in OpenCCS.

• Do nothing.

If enough credit available, CCS adds the product of requested maximum
job duration and number of requested resources to “Used-Credit”.

When the job terminates, OpenCCS updates “Used-Credit” with the
real value because the duration may be shorter than requested. If altering
the duration of a running job, “Used-Credit” is also updated.

Resource reservation requests are checked at submit time and immedi-
ately added to “Used-Credit”. If the reservation is killed or termintated,
“Used-Credit” is updated. Jobs running in a reservation are not changing
the “Used-Credit” value. If altering a reservation (resources or duration),
“Used-Credit” is also updated.

54 CHAPTER 5. RESOURCES

The command ccsinfo --limits (section 8.3.2) shows the current val-
ues for resource credits assigned to a user / group.
Example:

Resource Credits (in hours:mm:ss)

Only resources with a specified credit are printed

Resource Credit Used-Credit Remaining-Credit

==

mdce 1000:00:00 0:00:18 999:59:42

tesla 100:00:00 0:03:00 99:57:00

ncpus 2500000:00:00 0:03:00 2499999:57:00

Chapter 6

Submitting Jobs

6.1 Introduction

The standard way of submitting jobs to OpenCCS is using the command
ccsalloc. CCS distinguishes between batch jobs and interactive jobs. For
a submission, OpenCCS needs this information:

• The resources to allocate.

• When to run the job.

• How long the job will run.

• The corresponding executable.

If you are familiar with PBSPro or Torque, you will find several similar
directives.

6.2 Script Jobs

6.2.1 Submitting a Job Script

OpenCCS jobs can be submitted using ccsalloc (e.g., ccsalloc job.sh).
If job.sh is a script file, it may contain directives describing the job, fol-
lowed by the job itself. OpenCCS directives can be set by adding comments
with the following syntax to the job script: #CCS <option> [<value>]. If
directives are given multiple times, first match wins. The possible options
in the script directives are the same options as the ccsalloc command line
options. The job itself is usually called by ccsworker in the job script. A
job script may be structured as shown in example 6.2.1.

The shown script runs my preproc and then starts a Gaussian job using
the command ccsworker on one core of the Island HAWAII. The resources
are allocated for one hour.

55

56 CHAPTER 6. SUBMITTING JOBS

#!/usr/bin/sh

#CCS --island HAWAII

#CCS --res=rset=5:ncpus=4:mem=10g

#CCS --res=matlab=5

##CCS --res=place=scatter:excl

#CCS -t 1h

my_preproc

ccsworker g09 -- my_gaussianjob

Example 6.2.1: A simple job script

Parsing Rules

An initial line in the script that begins with the characters "#!’’ will be
ignored and scanning will start with the next line. Scanning will continue
until the first executable line, that is a line that is not blank, not a directive
line, nor a line whose first non white space character is ’#’.

If directives occur on subsequent lines, they will be ignored. A line in
the script file will be processed as a directive to ccsalloc if and only if
the string of characters starting with the first non white space character on
the line and of the same length as the directive prefix matches the directive
prefix (i.e. #CCS).

The remainder of the directive line consists of the options to ccsalloc in
the same syntax as they appear on the command line. The option character
has to be preceded with the ’-’ character.

If an option is present in both a directive and the command line, that op-
tion and its argument, if any, will be ignored in the directive. The command
line takes precedence.

If an option is present in a directive and not in the command line, that
option and its argument, if any, will be processed as if it had occurred on
the command line.

The option --res may occure multiple times.

6.2.2 Changing the Job’s CCS Directive

By default, the text string ’#CCS’ is used by OpenCCS to determine which
lines in the job file are directives. The leading # symbol was chosen because
it is a comment delimiter to all shell scripting languages in common use
on UNIX systems. Because directives look like comments, the scripting
language ignores them. The directive may be changed by the ccsalloc

option -C. E.g., ccsalloc -C ’’#PBS’’ job.sh This may be useful if one
wants to re-use a PBS or Torque script, since many directives are identical.

6.3. INTERACTIVE JOBS 57

6.2.3 Passing Arguments to Job Scripts

If you need to pass arguments to a job script, just add them to the ccsalloc
call. Example: ccsalloc job.sh -x 1 34

6.2.4 Jobs Without a Job Script

Jobs can be submitted with the following syntax:
ccsalloc [args] <worker> [-- worker_args] <job> [job_args]

Jobs are regularly executed as batch jobs. The specification of the used
Island has to be the first element of the [args] list.

Simple Jobs

Simple jobs may also be submitted without selecting a worker by calling
ccsalloc <job>.

6.3 Interactive Jobs

By using the ccsalloc option -I one can submit interactive jobs. The
-I option is ignored in a script directive. The streams STDIN, STDOUT,

and STDERR are then connected to the submitting terminal. This is useful
for debugging applications or for computational steering.

When the job starts to execute, all input to the job is from the terminal
session in which ccsalloc is running.

When an interactive job is submitted, the ccsalloc command will not
terminate when the job is submitted. It will remain running until the job
terminates, or is aborted.

If connected to job, the terminal characteristics are changed in the fol-
lowing way:

CTRL-C Sends the signal SIGINT to the job.

CTRL-S, CTRL-Q
Acts as usual.

CTRL-Z Acts as usual with one exception. If you type bg in your Unix-
shell to put the job into the background, the output (STDOUT,
STDERR) will be redirected as described in section 6.3.1: ’The
Virtual Terminal’.

6.3.1 The Virtual Terminal

Interactive applications are not stopped when the connection between the
user interface and the application has been broken.

58 CHAPTER 6. SUBMITTING JOBS

All output (STDOUT and/or STDERR) which is not explicitly redirected into
files will then be buffered by the EM on the execution host and (if the buffer
gets full) redirected into specified files. If you have specified a redirection
into a file and the file cannot be opened, OpenCCS aborts the job.

The redirections of STDOUT and STDERR become active if the connection
between the user interface (UI) on the frontend and the Execution Manager
(EM) on the compute host gets lost. This may be caused by:

• Typing CTRL-Z bg in the terminal

• A crash of the UI

• A forced shutdown of the UI

• A crash of the frontend

One can reconnect the application with the ccsbind command. The
applications streams (STDIN, STDOUT, and STDERR) will then be redirected
to the terminal. Please note: If you redirected the STDIN stream it will be
not redirect to the terminal.

6.4 Background Jobs

Background jobs are jobs which have the lowest priority (4.8). Therefore
a background job may never run. They are submitted by using the group
background. E.g., ccsalloc -g background -c 5 hostname.
A background job is not allowed to submit:

• reservations,

• jobs running in a reservation (ccsalloc --rsvid),

• jobs with a earliest start time (ccsalloc -a),

• jobs with a fixed start time (ccsalloc -s),

• jobs with a deadline (ccsalloc -e).

A user may inspect the used policy by calling ccsinfo -l -g background.

6.5 Job Submission Options

There are many options to the ccsalloc command. The rest of this chapter
explains the important ones. For a full description, refer to the ccsalloc

man page (page 97).

6.5. JOB SUBMISSION OPTIONS 59

6.5.1 Time Related Attributes

There are 3 time related options: Maximum runtime, start time, and end
time (i.e., a deadline).

Maximum Runtime

Each job has a maximum runtime. If you do not specify a maximum runtime,
a site specific value is taken. It can be shown by ccsinfo --default. If
the maximum runtime is exceeded OpenCCS will terminate the job.
Syntax: <-d|-t|--duration=|--time=|--walltime=> DURATION

Start Time

The start time can be specified in 3 different ways:

1. No specification
This means OpenCCS handles the job as a best-effort job, i.e., it may
move the job on the time axis as necessary. This is the normal way to
submit a job.

2. The job should not start before time T

Syntax: <-a|--after=> T

T may be given as absolute time (Format Datetime) or relative to now
(Format ’+’Timespan).
Examples:
ccsalloc -a +2h

ccsalloc -a 17:00:24.03.2023

ccsalloc -a 2348

3. The job should start exactly at time T or never
Syntax: <-s|--starttime=> T

T may be given as absolute time (Format Datetime).
If the start time should be now, use ’now’.
If the start time should be relative to now, use ’+’Timespan.
If it is not possible to schedule the job, it will be rejected.
Examples:
ccsalloc -s now

ccsalloc -s 17:00:24.03.2023

ccsalloc -s +3d

End Time

You may specify a deadline. This is the time the job should be terminated
at the latest.
Syntax: <-e|--endtime=> T

Format: Datetime.

60 CHAPTER 6. SUBMITTING JOBS

Example: ccsalloc -e 23

The scheduler may move the job on the time axis before as long as the
deadline is met.

Combinations and Effects

Table 6.1 summarizes the combinations of the different time related options
and the effects on how OpenCCS plans the job.

CLI Option Combinations Start Stop Comment

-t d asap start + d Best-effort

-a T -t d ≥ T T+d Best-effort

-s T -t d = T T+d Fix

-e T -t d ≤ T-d ≤ T Deadline

-a T1 -e T2 -t d ≥ T1 ≤ T2 Deadline, d must be ≤ T2-T1

-a T1 -s T2 -t d Not allowed

-s T1 -e T2 -t d Not allowed

-a T1 -s T2 -e T3 -t d Not allowed

Table 6.1: Correlations of the different scheduling hints

6.5.2 Request Name

The option <-N|--name=> <name> specifies a name for the request. The
name specified may be any length. If no request name has been specified,
OpenCCS will set the following:

• INT, if an interactive shell is requested.

• RSV, if a reservation is requested.

• The base name of the job script file or the executable specified on the
command line in all other cases.

A default value can be set. Refer to 4.5.2.

6.5.3 Email Notification

The option <-m|--notifyuser=> <EVENTS> specifies the set of conditions
under which OpenCCS will send mail messages about the job. EVENTS is a
string which consists of either the single character n, or one or more of the
characters a, b, e, r, s, and w.

a Send mail if job is aborted by OpenCCS.

6.5. JOB SUBMISSION OPTIONS 61

b Send mail when job begins execution.

e Send mail when job ends execution.

n Do not send mails.

r Send mail if job start has been replanned.

s Send mail for each subjob of a job array.

w Send warning mails. E.g.: resource could not be allocated,
reservation unused, runtime expires soon, ...

If not set it defaults to: ’n’.
A default value can be set. Refer to 4.5.2.

6.5.4 Email Recipients

The option <-M|--mail=> <account@domain, ...> specifies a list of email
addresses separated by ’,’. OpenCCS will send all emails to the stated
recipient(s). Defaults to: no mail address given.
A default value can be set. Refer to 4.5.2.

6.5.5 Job Notification

The option --notifyjob=<HOW,WHEN> specifies how and when a job should
be notifed by OpenCCS.
HOW is either a command or a signal which is executed/ sent to the job.
WHEN specifies the timespan before the resource is released.

cmd Is an executable. It will have the same environment variables
as the initial job started on the boot node.

signal Can be given as: [-]<digit> or [-][SIG]<signal>.

WHEN Fomat: Timespan. It must be ≥ 60 seconds.

Setting HOW and WHEN to 0 (eg. -notifyjob 0, 0) disables this feature. If not
set it defaults to: 0, 0 (ie., do not notify the job.)
A default value can be set. Refer to 4.5.2. Examples:

• --notifyjob=$HOME/bin/myScript.sh,10m

Executes $HOME/bin/myScript.sh 10 minutes before the resource is
released.

• --notifyjob=XCPU, 135

Sends the signal SIGXCPU 135 seconds before the resource is released.

• --notifyjob=-9,12m

Sends the signal SIGKILL 12 minutes before the resource is released.

62 CHAPTER 6. SUBMITTING JOBS

6.5.6 Input, Output and Error Files

If submitting a batch job OpenCCS, by default, sets the following redirec-
tions:

STDIN from /dev/null, which means no input.

STDOUT to a file named job-name.<reqID>.out

STDERR to a file named
verb—job-name.¡reqID¿.err—

<reqID> is the request-ID assigned by OpenCCS. STDOUT and STDERR files
are located in the submit directory. This redirection also takes place for
interactive jobs if the user-interface has lost the connection to the job (see
also section 6.3.1).

Specifying Path for STDIN Redirection

The ccsalloc option <--stdin=> <FILE> specifies the path for the STDIN

redirection. The path may be absolute or relative. In the latter case it is
assumed relative to the submit directory.

Specifying Path for STDOUT Redirection

The ccsalloc option <-o|--output=|--stdout=> <FILE> specifies the path
for the STDOUT redirection. The path may be absolute or relative. In the
latter case it is assumed relative to the submit directory.
A default value can be set. Refer to 4.5.2.

Specifying Path for STDERR Redirection

The ccsalloc option --stderr=<FILE> specifies the path for the STDERR

redirection. The path may be absolute or relative. In the latter case it is
assumed relative to the submit directory.

Keywords

The following keywords may be used while specifying redirections:

%A will be replaced by the reqID of the related job array. If the job
is no subjob, then %A and will be replaced by the job’s reqID.

%a will be replaced by the subjob index of a job array subjob. If
the job is no subjob, then %a will be replaced by the job’s reqID.

%reqid will be replaced by the reqID.

%x will be replaced by the job name.

6.5. JOB SUBMISSION OPTIONS 63

Joining STDOUT and STDERR Redirection

The ccsalloc option <-j|--join[=]> [HOW] will specify how OpenCCS
should join the STDOUT and STDERR streams. HOW is one of the following:

n Do not join STDOUT and STDERR.

oe join STDERR into STDOUT.

eo join STDOUT into STDERR.

If HOW is not given joining is set to ’oe’.
If joining is not set it defaults to ’n’.

Avoiding STDOUT and STDERR Redirection

Set the option -o or -e to /dev/null.

Examples

• ccsalloc --stdin=myFILE%reqid.in

will read the STDIN stream from the file named myFILE<reqID>.in

whereby <reqID> is the request-ID assigned by OpenCCS.

• ccsalloc -o MYLOG-%A.out.%a will create a file where %A is replaced
by the reqID of the job array and %a is replaced by the subjob index.

• ccsalloc --stderr=myFILE%reqid.stderr

will create a file named myFILE<reqID>.stderr whereby <reqID> is
the request-ID assigned by OpenCCS.

6.5.7 Job Trace File

As mentioned in section 2.3.5, OpenCCS may write a job trace file. The
option --tracefile=<FILE> specifies the path for this file. The path may
be absolute or relative. In the latter case it is assumed relative to the submit
directory.

Keywords

The following keywords may be used while specifying:

%reqid will be replaced by the reqID.

%x will be replaced by the job name.

E.g.: ccsalloc --tracefile=myFILE%reqid.trace

will create a file named myFILE<reqID>.trace whereby <reqID> is the
request-ID assigned by OpenCCS.

64 CHAPTER 6. SUBMITTING JOBS

Chapter 7

Predicting Job Start Times

It is sometimes useful to know which resources are when available. For
example how many GPUs can I get now or how long is the waiting time if
requesting chunks with 5 cores and 6GB per core.

For this purposes OpenCCS provides ccsinfo --predict. It allows to
specify resource requests together with iterators and OpenCCS will print a
list with the earliest start times. The syntax is:
ccsinfo [-g GROUP] [--raw] -p ’’<resources>[;<iterator>;...’’]

OpenCCS will replace all found iterators in resources by their spec-
ified values and plan this request(s) including all user / group related limi-
tations. It returns the planned start times.

Please note that the situation may change within seconds, if other users
are submitting jobs in the meanwhile.

7.0.1 Resource Syntax

The syntax is like specifying resources at submit call (5.4) but without
--res=rset.

Examples

• %C:ncpus=%1:mem=%2g

• %C:tesla=%1:mem=%3g+ncpus=2:mem=5g,place=scatter:excl

• The shortcuts -n and -c are allowed to iterate over nodes or cores.
Examples: -n %C;%C=1-10 or -c %C; %C=100-1000:100.
Note: The only iterator recognized here is %C.

7.0.2 Iterator Syntax

Name=<first>[-<last>[:stepping]] All of them must be integers ≥ 0.
Default stepping is 1. Three types of iterators are supported:

65

66 CHAPTER 7. PREDICTING JOB START TIMES

1. %C iterates the number of chunks.

• The default %C iterator is 1-1:1.

2. %D iterates the job duration.

• Last character is unit if not a number(5.2).
E.g., %D=1-5h or %D=1-10:2h.

• The default unit is second.
E.g., %D=1-10:2 iterates: 1s, 3s, 5s, 7s, 9s.

• The default %D iterator is the default duration assigned to the
caller’s credentials (i.e., user and group). Call ccsinfo --def to
see the default duration.

3. %R iterates the resources.

• Nine iterators are available: %1..%9.

• Default values are -1:-1:1.

• One may use %R iterators in any consumable resource (chunk or
job wide).

• An %R iterator may be used for multiple resources.
E.g., ncpus=%1:tesla=%1;%1=1-5

• %R iterators will be evaluated in each %C iteration, until the max-
imum of all %R iterators is reached.
E.g., %1=1-10; %2=1-5

Remarks

1. Loop-Nesting is: %D, %C, %R.

2. %C and %D are not case sensitive.

3. Spaces are allowed in the resource and iterator specifications.

4. The order of iterator specifications does not matter.

5. Specifying an iterator which is not used is possible.

6. Multiple specifications of the same iterator is possible. Last match
wins.

7. OpenCCS will print only valid results. If an iteration cannot be
planned due to limitations or unavailable resources, it will be silently
skipped.

8. Syntax errors are printed.

67

7.0.3 Examples

• Predict 5-10 chunks with Tesla GPUs, 5 cores and 30GiByte RAM,
duration 1-2 hours.
Refer to Example 7.0.1.

• Predict 1-10 nodes (stepping 2) exclusively, duration 1-4 hours, group
benchmark.
ccsinfo -g benchmark -p ’-n %C; %C=1-10:2; %D=1-4h’

• Predict 100-500 cores (stepping 100), duration 1-5 days stepping 2.
ccsinfo -p ’-c %C; %C=100-500:100; %D=1-5:2d’

• Predict 1-16 cores with 4GB per core, duration 1 day, output in raw
format.
ccsinfo --raw -p ’ncpus=%1:mem=%2G; %1=1-16; %2=4-64:4; %D=1d’

• Predict 1-16 cores with 4GB mem and 8GiByte vmem per core, dura-
tion 1 day.
ccsinfo -p ’ncpus=%1:mem=%2G:vmem=%3g; %1=1-16; %2=4-64:4; %3=8-128:8; %D=1d’

Refer to Example 7.0.1.

• Predict 100-256 chunks with Matlab licenses, duration 75m.
ccsinfo -p ’%C:ncpus=16:mem=30g,mdce=%2; %C=100-256:64; %2=4-64:4; %D=75m’

68 CHAPTER 7. PREDICTING JOB START TIMES

$ ccsinfo -p "%C:tesla=1:ncpus=5:mem=30g,place=scatter;%C=5-10;%D=1-2h"

Duration Starts at (in) Resources

===

1h now 5:tesla=1:ncpus=5:mem=30g,place=scatter

1h now 6:tesla=1:ncpus=5:mem=30g,place=scatter

1h now 7:tesla=1:ncpus=5:mem=30g,place=scatter

1h 13:40 (58m) 8:tesla=1:ncpus=5:mem=30g,place=scatter

1h 13:40 (58m) 9:tesla=1:ncpus=5:mem=30g,place=scatter

1h 13:40 (58m) 10:tesla=1:ncpus=5:mem=30g,place=scatter

2h now 5:tesla=1:ncpus=5:mem=30g,place=scatter

2h now 6:tesla=1:ncpus=5:mem=30g,place=scatter

2h now 7:tesla=1:ncpus=5:mem=30g,place=scatter

2h 13:40 (58m) 8:tesla=1:ncpus=5:mem=30g,place=scatter

2h 13:40 (58m) 9:tesla=1:ncpus=5:mem=30g,place=scatter

2h 13:40 (58m) 10:tesla=1:ncpus=5:mem=30g,place=scatter

$ ccsinfo -p "ncpus=%1:mem=%2G:vmem=%3g; %1=1-16; %2=4-64:4; %3=8-128:8; %D=1d"

ccsinfo: Using default group : ccsadmin

Duration Starts at (in) Resources

===

1d now ncpus=1:mem=4G:vmem=8g

1d now ncpus=2:mem=8G:vmem=16g

1d now ncpus=3:mem=12G:vmem=24g

1d now ncpus=4:mem=16G:vmem=32g

1d now ncpus=5:mem=20G:vmem=40g

1d now ncpus=6:mem=24G:vmem=48g

1d now ncpus=7:mem=28G:vmem=56g

1d 17:28 (2h13m) ncpus=8:mem=32G:vmem=64g

1d 19:37 (4h22m) ncpus=9:mem=36G:vmem=72g

1d 17:28 (2h13m) ncpus=10:mem=40G:vmem=80g

1d 17:28 (2h13m) ncpus=11:mem=44G:vmem=88g

1d 17:28 (2h13m) ncpus=12:mem=48G:vmem=96g

1d 17:28 (2h13m) ncpus=13:mem=52G:vmem=104g

1d 17:28 (2h13m) ncpus=14:mem=56G:vmem=112g

1d 17:28 (2h13m) ncpus=15:mem=60G:vmem=120g

Example 7.0.1: Example output of ccsinfo -p

Chapter 8

Checking Job and System
Status

For checking the job and system status, OpenCCS offers the ccsinfo com-
mand line interface. The remainder of this section shows the most important
options of ccsinfo. A complete list is offered by the man page (page 123).

8.1 Schedule Status

The schedule can be viewed via the option <-s|--schedule [sub-options]>[reqID...].

8.1.1 Summary

ccsinfo <-s|--schedule> --summary

Shows summarized schedule information. This sub-option is mutual exclu-
sive to all other ones.

%ccsinfo -s --summ

Policy: CCS

State Count

=======================

Running 1023

Planned 457

Reservations 3

Allocating 0

Stopping 12

Stopped 378

Waiting 0

Hold 0

New 0

Backfilling 0

Replanning 0

69

70 CHAPTER 8. CHECKING JOB AND SYSTEM STATUS

Total 1870

8.1.2 Job Distribution

ccsinfo <-s|--schedule> --dist[=filter]

Shows information about the job distribution, i.e., how many jobs are in
which state. This sub-option is mutual exclusive to all other ones. Possible
filters are:

all Shows distribution for users and groups.

group Shows distribution for groups.

mine Shows the callers job distribution.

user Shows distribution for users.

filter is not case sensitive and may be abbreviated as long as the abbre-
viation is unique. Default filter is mine.

%ccsinfo -s --dist

User Total Run Planned Waiting Hold

===

kel 573 214 345 0 10

%ccsinfo -s --dist=g

Group Total Run Planned Waiting Hold

===

QCD 18 18 0 0 0

ROPOL 6 3 1 0 1

UBI 2 1 1 0 0

UBI2 15324 106 14896 1 321

VON 1 1 0 0 0

8.1.3 Filtering the Data

ccsinfo <-s|--schedule>[options] reqID scans for the given re-
qIDs. This disables all filters. Request names are not recognized.

If not scanning for specific reqID, one can use the following sub-options
to filter the output (which may be combined):

--group=<group[,...]>

Filters for the specified group(s).

--user=<account[,...]>

Filters for the specified account(s).

--mine Shows only information about current account.

8.1. SCHEDULE STATUS 71

--state=<state[,...]>

Filters for requests having a state in the given list. Possible
states: C (Completed), H (Hold), P (Planned), R (Running),
and W (Waiting)

--type=<type[,...]>

Filters for requests having a type in the given list. Possible
types: B (Batch), I (Interactive), and R (Reservations)

state and type are not case sensitive and may be abbreviated as long as
the abbreviations are unique.

8.1.4 Formatting the Output

The following sub-options are available to format the output (they may be
also combined):

--fmt=<field[...]>

Shows only specified fields.
Syntax of field string is: ’%.NX’

. right justification (optional)

N sizeof field (optional)

X the field specifier.

Example: --fmt="%.R %T %w %.10z %P %50j"

The following fields are available. Fields marked with ’(*)’ are
accessible only to the request owner or the administrator. If a
field is not accessible the output is ’N/A’.

C Command line call (*)

D Duration

E Given Deadline

F Submitted from (*)

G Group

J Job notification (*)

M Mail address(*)

N Request name

O Owner

P Planned start time

R ReqID

S Given start time

T Type

72 CHAPTER 8. CHECKING JOB AND SYSTEM STATUS

U User interface (*)

V Event notification (*)

a Attributes

• A: Mapping at Allocation

• B: Background Priority

• D: Dynamic Limit Extension

• F: Freepool Impact

• L: Limits are checked at runtime

• M: Multihost

• S: Small-Job (Mapped on “Local only” nodes)

’-’ denotes that the attribute is not set.

b Command (*)

c Core Efficiency(*)
Shows cput

walltimeand
cput

ncpus∗walltime in percent.
Accuracy depends on the received values from the
nodes which sample and send the data in an ad-
ministrator defined interval (e.g., each 10s). Ad-
ditionally, in some cases OpenCCS is not able to
sample all job resource usage data if the job is us-
ing more than one node. Hence, real values may
be sometimes higher.

d Percent Done

e STDERR (*)

i STDIN (*)

j Job resource set

m Mapping

n Node resource set

o STDOUT (*)

p Join (*)

q Priority

r RSV-ID

t Trace file (*)

u User resource set

v Elapsed time

w State

x Sub-state

y Release time

8.2. SYSTEM STATUS 73

z Submission time

--lines=<#>

Limits the number of found requests to the given number.

--raw Prints the result in a raw format: No headline, no field format-
ting. Fields are separated by ’ ’.

8.1.5 Examples

The following examples asks for information about jobs which were submit-
ted by the caller, which are in state Running or Planned, which are of type
Batch, and which are assigned to the group foo or bar.

%ccsinfo -s --mine --state=R,p --type=b --group=foo,bar --lines=3

reqID Name Account State Start Walltime Job-Resource-Set

==

163 ccsHAWAII2B kel PLANNED 18:57:19.04.12 145d vmem=50g,ncpus=17

180 ccsHAWAII6B kel PLANNED 19:11:19.04.12 37h30m mem=512m,ncpus=1

160 kel_2 kel ALLOCATED 17:57:19.04.12 1h vmem=1t,ncpus=4

%ccsinfo -s --mine --state=r,p --type=b --group=foo,bar --lines=3 --raw

163 ccsHAWAII2B kel PLANNED 18:57:19.04.12 145d vmem=50g,ncpus=17

180 ccsHAWAII6B kel PLANNED 19:11:19.04.12 37h30m mem=512m,ncpus=1

160 kel_2 kel ALLOCATED 17:57:19.04.12 1h vmem=1t,ncpus=4

8.2 System Status

8.2.1 Node Status

ccsinfo <-n, --nodeinfo> [--summary | --state=<state> | <node, ...>]

shows information about the listed nodes.

Summary

Using --summary shows a summarized information about the node states.

%ccsinfo -n --summary

State Count

================================

ok 650

offline 2

down 1

down/offline 0

unknown 0

Total 653

Nodes in Use/Exclusive 451/109

74 CHAPTER 8. CHECKING JOB AND SYSTEM STATUS

Detailed Information

The option <-n, --nodeinfo> [node, ...] shows information about the
listed nodes. Giving no node name, shows information about all nodes.
Adding --raw prints in a raw format. One line per node. Fields are sepa-
rated by ’ ;’.

%ccsinfo -n kel123

kel123

rectime = 18:30:23

status = up,online

coordinates = 0,0,0

running jobs = 345,56,7

uptime = 1d4h28m59s since Wed Mar,19 2014 14:21

uname = Linux kel123 2.6.32-35-generic #78-Ubuntu SMP i686

ncpus = 2

totmem = 1652472k

vmem = 1652472k

availmem = 840896k

physmem = 1025980k

loadave = 0.68

sessions = 5906 5756 2478 5815 5853 5880 5890 5899

nsessions = 8

nusers = 2

idletime = 0

only local jobs = false

Filtering the Data

Using --state=<state> shows only nodes having a specific state. Possible
states are:

all Does not filter, prints them all.

sick Filters for nodes which are in trouble.

ok Filters for nodes which are in not in trouble.

up Filters for nodes which are in state UP.

down Filters for nodes which are in state DOWN.

online Filters for nodes which are in state ONLINE .

offline Filters for nodes which are in state OFFLINE.

unknown Filters for nodes which are in state UNKNOWN.

8.2. SYSTEM STATUS 75

state is not case sensitive and may be abbreviated as long as the abbrevi-
ation is unique.

%ccsinfo -n --state=of

Host State Running Jobs Message

===

kel245 up,offline 34,45 will be rebooted

Using --reqid=<reqID> shows only nodes assigned to reqID....

%ccsinfo -n --reqid=1356

Host State Running Jobs Message

===

kel5 up,online 1356,45

kel78 up,offline 1356 defect hard disk

Formatting the Output

The following sub-options are available to format the output. They may be
combined and used together with --reqid or --state.

--fmt=<field[...]>

Shows only specified fields.
Syntax of field string is: ’%.NX’

. right justification (optional)

N sizeof field (optional)

X the field specifier.

Example: --fmt="%.A %p %50i"

The following fields are available:

A Available memory

C Number of cores (ncpus)

H Hostname

J Running jobs

M Physical memory

L Load

N Note

O Uptime

S Status

U Uname

V Virtual memory

76 CHAPTER 8. CHECKING JOB AND SYSTEM STATUS

a Architecture

c Coordinates

i Idletime

p Properties

m Minimum Resources

r Record time

s Sessions

t Number of sessions (nsessions)

u Number of users (nusers)

If a field is not accessible the output is ’N/A’.

--raw Prints the result in a raw format: No headline, no field format-
ting. Fields are separated by ’ ’.

8.2.2 Available Workers

The option --worker shows the system specific available workers:

%ccsinfo --worker -i HAWAII

ccsinfo: HAWAII provides the following workers:

ccsinfo: Refer also to the man page ccsworker(1) or

call ’ccsinfo --whelp=<worker>’

HAWAII provides the following workers:

Worker Purpose

===

abaqus starts an ABAQUS application

g03 starts a Gaussian-03 application

g09 starts a Gaussian-09 application

mpich2 starts an MPICH2 application

mvapich starts an MVAPICH application

ompi starts an OpenMPI application

starccm starts a STAR-CCM+ application

turbomole starts a Turbomole application

8.2. SYSTEM STATUS 77

8.2.3 Allocatable Resources

The option <-a|--allocatable> shows the allocatable resources. This list
comprises the built-in and the customized resources. The column Type rep-
resents the resource format as described in 5.2.
’A’ is String
’B’ is Boolean
’D’ is DateTime
’S’ is Size
’T’ is Timespan
’U’ is Unitary
’V’ is String Array.
The column Flags represents the resource categories as described in 5.1.
’C’ marks a consumable resource
’D’ marks a dynamic resource
’J’ marks a job wide resource
’N’ marks a non alterable resource.
The column Amount prints the used, online, and maximum amount of the re-
lated resource. The online amount depends on the availability of the nodes.
The column Default prints the system default value. N/A means “Not
Available”.

%ccsinfo -a

Name Type, Amount Default Purpose

Flags Used/Online/Max

==

ncpus U,C 7993/9456/9568 1 number of cores

nodes U,C 294/589/614 1 number of nodes

mem S,C 18.69t/40.12t/40.74t 3g physical memory

vmem S,C 22.33t/49.09t/49.81t 2g virtual memory

cput T, - N/A CPU time

walltime T,J - N/A walltime

hostname A, - N/A hostname

arch A, - N/A host architecture

mpiprocs U, - N/A number of mpi processes per chunk

ompthreads U, - N/A number of threads per chunk

acc B, - N/A node with accelerator card

norm B, - N/A 64GB compute node

phi U,C 0/5/8 N/A Intel Xeon Phi card

smp B, - N/A SMP node

tesla U,C 31/31/32 N/A Tesla K20xm card

sw A,CJ - N/A Software

The option <-a|--allocatable --classes> shows allocatable resource classes.

78 CHAPTER 8. CHECKING JOB AND SYSTEM STATUS

The column #Hosts prints the online and maximum number of hosts.

%ccsinfo -a --classes

Name Class #Hosts

Online/Max

====================================

ncpus 16 587/594

32 2/2

nodes 1 589/614

mem 63g 576/582

1009g 2/2

252g 11/12

vmem 84g 31/31

78g 545/551

1t 2/2

267g 11/12

arch SL 6.3 589/614

CENTOS-5.2 25/614

acc false 558/582

true 31/32

norm false 49/62

true 540/552

phi 1 5/8

smp false 587/612

true 2/2

tesla 1 31/32

wash false 578/594

true 11/20

sw g03 -

8.2.4 FreePools

The option --freepools shows the defined FreePools:

%ccsinfo --freepools

name= CPUS

resource = ncpus

quantity = 1/50%

allowed = count: 5, runtime: 2h

validity = * 10-20 * * *

name= PHYSICS

resource = ncpus

quantity = 50

allowed = users:kel || groups:+phys || count: 5, runtime: 2h

validity = always

8.3. GROUP / USER RELATED INFOS 79

For a description of the rows refer to 2.4.3

8.3 Group / User Related Infos

8.3.1 Group Membership

The option --groups shows a list of groups the caller is member of.

%ccsinfo --groups

Groups: ccsadmin,FoO,pc2guests

8.3.2 Limits and Privileges

The option <-l|--limits> shows the limits and privileges. Both are as-
signed to a group and/or a user.
If not using the sub options -g <group> and --user=<user> the CLI takes
the default values of the caller.
Using --user=ALL, shows the group data and all members of the group,
having an own specification.

%ccsinfo -l -g pc2guests

Active policy for jobs exceeding their resource credits is: Reject the job.

Group-Data

==========

name :pc2guests

validity :always

privileges :alter,interactive,reserve

members :+pc2guests,arnie

Resource Limits:

Resource Items Duration Area Validity

===

* unlimited 315d unlimited always

mdce 256 315d unlimited always

tesla 10 120d unlimited always

ncpus 1800 21d unlimited always

jobs 5000 - - from 14:32:10.12.14

arrayjobs 1000 - - always

Alteration limits if request is in state ALLOCATED:

What Limit Validity

==================================

walltime 10h/10% always

80 CHAPTER 8. CHECKING JOB AND SYSTEM STATUS

Resource Credits (in hours:mm:ss)

Only resources with a specified credit are printed

Resource Credit Used-Credit Remaining-Credit

==

mdce 1000:00:00 0:00:18 999:59:42

tesla 100:00:00 0:03:00 99:57:00

ncpus 2500000:00:00 0:03:00 2499999:57:00

For a description of the columns, refer to section 2.4.2.
The alteration limit for walltime is related only to already running jobs. It is
not valid for jobs which are not yet running. In this example, it means that
the user can extend the runtime of a running job at most to the maximum of
1 hour and 10% of the initial maximum duration. If for example the initial
maximum duration was 10 days, then the user may extend the runtime of
the running job at most to 11 days. If the initial maximum duration was 10
minutes, then the user may extend the runtime of the running job at most
to 1hour and 10 minutes.

Privilege

A privilege specifies which actions are allowed for a consumer. The following
privileges are available:

a alter jobs

i submit interactive jobs

l is locked

r reserve resources

8.3.3 Default and Force Values

The option --defaults shows default and force values. Both are assigned
to a group and/or a user.
Attribute (the first column) describes the attribute.
Default (the second column) describes the default value. It is taken, if the
caller did not specify the attribute in question.
Force (the third column) shows values which overwrite user given values or
will be taken as a default.

The administrator may assign defaults to specific users, groups, or the
whole system. If both Default and Force are specified, Force will be taken.
If not using the sub options -gNAME and –user=USER, the CLI shows
the default values valid for the caller’s default group.
Example:

8.4. REQUEST STATUS 81

%ccsinfo --def

Attribute Default Force

=============================

mem 128m

mdce 128

place free:shared

8.3.4 Used Resources

The option -u or --usedres shows the currently used resources of the re-
lated group.
Example:

%ccsinfo -u

Allocated Resources of Group: pc2guests

Resource Limit Allocated (% of Limit)

==

ncpus 1800 1024 (56.88)

mdce 256 128 (50.00)

8.4 Request Status

ccsinfo <req_identifier> shows detailed information about the specified
request(s). This data will be available for a site specific interval (often 30m)
before OpenCCS removes the job completely from its runtime database.
Thereafter, the command ccstracejob may be used to print job data.

%ccsinfo 29308

Request-ID : 29308

Name : kel_3

Owner : kel

Group : Foo

Type : Batch

Priority : 1

CLI call : --group=foo go9 -- Scan.com

Submitted from : /pc2/work/kel/2D

Start Time : None

Deadline : None

Submission Time : 13:18

Allocation Time : 13:18

Maximum Runtime : 2w

Release Time : 13:18:03.05 (in 1w6d18h27m)

State : ALLOCATED since 55m56s

User Resource Set : 2:ncpus=1:mem=36g,place=scatter:excl

Job Resource Set : exclnodes=2,mem=124g,vmem=157g,ncpus=32,mpiprocs=32,

place=scatter:excl

Chunks : 2:mem=36g:ncpus=1

Mapping : node513:=mem=62g:ncpus=16,node45:=mem=62g:ncpus=16

Event-Notification : abe---

Emails goto : kel@hell.org

CMD : g09 -- Scan.com

Job notifying : Off

Trace file : None

82 CHAPTER 8. CHECKING JOB AND SYSTEM STATUS

STDIN : redirected from : /dev/null

STDOUT : redirected to : /pc2/work/kel/2D/Scan.log

STDERR : redirected to : /pc2/work/kel/2D/Scan.log

Stream Joining : n

Resource-Usage :

Item cput mem vmem walltime

==

Summary 22h1m56s 11.44g 25.89g 55m56s

node45 13h27m1s 5.77g 13.13g 55m46s

node513 8h34m55s 5.68g 12.77g 55m56s

Chapter 9

Working with OpenCCS Jobs

9.1 Altering Scheduled Requests

Nearly all attributes of a request (job or reservation) may be altered after
submission, using the ccsalter command. The syntax is:
ccsalter <options> <req_identifier...>

Several requests can be altered simultaneously. If one value cannot be altered
for a request, the whole alteration of this request fails.
The resource definition can be done using the same shortcuts as in ccsalloc,
e.g. -c or -n.
New values have to be given as absolute values. E.g., resources must not be
specified relatively (e.g., -c+2). Exceptions are the time related attributes:

start time -a 0 or -s 0 both remove the (minimum) start time.

runtime Accepts an absolute value or <+->timespan.

stop time -e 0 removes the end time.

Table 9.1 depicts what can be when altered.

83

84 CHAPTER 9. WORKING WITH OPENCCS JOBS

Table 9.1: Which job attribute can be when altered.

What When Comment

–after PLANNED,WAITING 1, 2

–allowed always Reservations only. Valid only for
new jobs.

–cwd PLANNED,WAITING

–duration always 1,2. A longer duration may be de-
nied if:

• The sum of all requested pro-
longations exceeds the limit.

• Planned jobs, which are not
best-effort jobs, would be de-
layed.

–endtime PLANNED,WAITING 1, 3

–group PLANNED,WAITING 1, 2

–hold PLANNED,WAITING 4

–join PLANNED,WAITING

–mail always

–name always

–notifyjob always

–notifyuser always

–res PLANNED,WAITING 1, 2

–resume WAITING 4

–rsvid PLANNED,WAITING

–starttimes PLANNED,WAITING 1, 3

–stdin PLANNED,WAITING

–stderr PLANNED,WAITING

–stdout PLANNED,WAITING

–tracefile always Alter message is written to the new
file.

Notes:
1: For a reservation, only if no job is running in the reservation.
2: For a job array, only if no job was already started in the job array.
3: Not allowed for job arrays.
4: Not for reservations.

9.2. HOLDING / RESUMING JOBS 85

9.2 Holding / Resuming Jobs

Using the command ccsalter, one can put a request to state hold. Hold
means, the job is ignored in planning.
Syntax is: ccsalter --hold [-m MESSAGE] request_id ...

-m MESSAGE will notify the user (depending on the notify flags).
ccsalter --hold cannot be used with other ccsalter options.
Holding a reservation or single job-array subjobs is not possible.
A job in state hold can be altered, killed, and resumed.
Resuming means, the job is planned again and may start running.
Resuming a job is done by ccsalter -r|--release request_id ...

ccsinfo --state=hold prints jobs in state hold.
ccsinfo --dist prints a column for jobs in state hold.
ccsinfo --summary prints the total number of jobs in state hold.

9.3 Sending Signals to Jobs

Using the command ccssignal, one can send a signal to running jobs. The
signal is sent to the session leader of the job on the boot node. The syntax
is:
ccssignal <signal> <req_identifier>[...]

signal Can be given as: [-]<digit> or [-][SIG]<signal>.

req identifier ...

The request-ID(s) or request-name(s). They can be mixed.

Signaling a job will be rejected if:

• The user is not authorized to signal the job.

• The job is not in the running state or exiting.

• The requested signal is not supported.

Two special signal names, suspend and resume, (note, all lower case), are
used to suspend and resume jobs. When suspended, a job continues to
occupy system resources. Admin privilege is required to suspend or resume
a job.
Examples:

• ccssignal -9 123

• ccssignal 9 123

• ccssignal -KILL 123

• ccssignal SIGKILL 123

All examples above send the signal SIGKILL to the job 123

86 CHAPTER 9. WORKING WITH OPENCCS JOBS

9.4 Sending Messages to Jobs

Sending a message to a job means that OpenCCS writes a message string
into one or more output files of the job. Typically, this is done to leave an
informative message in the output of the job. Such messages can be written
using the command ccsmsg. The syntax is:
ccsmsg [-e] [-o] <msg> <req_identifier>[...]

-e Write message to stderr (default)

-o Write message to stdout

msg Message to send. If the string contains blanks, the string must
be quoted. If the final character of the string is not a newline,
a newline character will be added when written to the jobs file.

req identifier ...

The request-ID(s) or request-name(s). They can be mixed.

9.5 Deleting Requests

OpenCCS provides the command ccskill for deleting jobs or reservations.
It deletes in the order in which the request identifiers are presented to the
command.

Syntax: ccskill [options] <req_identifier ...>

The following options are available:

--all May be used to kill all owned jobs. This also valid for group
managers and Administrators. The higher privilege is ignored
if using “--all”.

-f Interactive jobs which are connected to a user interface (e.g.
ccsalloc or ccsbind), Can be killed using this force parameter.

-m,--message <MESSAGE>

If given MESSAGE will be sent to the owner of the request. If a
tracefile is assigned to the request, MESSAGE will also appear
in that file.

req identifier ...

The request-ID(s) or request-name(s). They can be mixed.

Chapter 10

Reservations

10.1 Submitting a Reservation

The ccsalloc command can also be used to submit a reservation. Reser-
vations can be submitted using the parameter -s, -e and -t, at which:

• -s Determines the starting time of the reservation. Format: Datetime.

• -e Is the end time of the of the reservation. Format: Datetime.

• -t Is the runtime of the reservation. Format: Timespan.

Two of these parameters have to be set to submit a valid reservation. The
optional parameter --allowed can be used to allow other users (or groups)
to use the reservation. It expects a comma separated list of users or groups.
Note: If jobs submitted to the reservation should be able get nodes exclu-
sively, you have to reserve them exclusively.
Examples:

• Reserve 10 arbitrary nodes, starting at 8 pm, for 2 hours:
ccsalloc -s 800 -t 2h -n 10

• Reserve 10 nodes (each with 32 cores), starting at 8 pm, for 2 hours:
ccsalloc -s 800 -t 2h --res=rset=10:ncpus=32,place=scatter:excl

• Reserve 10 cores, starting in one hour, ending at 11 pm. In addition
to the submitting user user1 all members of the group group1 may
use the reserved resources .
ccsalloc -s +1h -e 23:00 -c 10 --allowed="user1,group1"

After a successful submission, ccsalloc returns a reservation-id (rsvid), rsvid

which has to be known for using the reserved resources.

87

88 CHAPTER 10. RESERVATIONS

10.2 Using a Reservation

A previously made reservation can be used by setting the --rsvid option of
ccsalloc. If the job does not fit in the reservation’s duration it is rejected.
The resources from one reservation can be split to different jobs.
Examples:
ccsalloc -t 2h -n 7 --rsvid=123 myjob.sh

ccsalloc -t 10m -c 5 --rsvid=123 myjob.sh

10.3 Altering a Reservation

A reservation can be altered like any other request. However, some things
are different. It is not possible to alter time or resource dependent attributes,
while a job is running. After altering time or resource dependent attributes,
all related jobs are re-planned. If it is not possible to plan such a job it is
switched to the state WAITING.

10.4 Deleting a Reservation

Use ccskill to delete a reservation. If there are related jobs planned or
running, these jobs are deleted first.

Chapter 11

Job Arrays

11.1 Introduction

Job arrays may be used to group closely related work into a set so that
you can submit, query, modify, and display the set as a unit. Job arrays
are useful whenever you want to run the same program over and over on
different input files. Each job in a job array is called a subjob.

All subjobs have the same attributes, including resource requirements,
limits, and scheduling priority. The scheduler handles each subjob in a job
array as a separate job. The given executable is run once for each subjob
and may invoke different commands based on the subjob index.

Subjobs are scheduled and treated like normal jobs, with the exceptions
noted in this chapter.

Each subjob has its own reqID. The array itself also has a reqID. A
subjob may be specificed by its reqID or its subjob identifier.

11.2 Glossary

Job Array is a container for a collection of similar jobs submitted under
a single reqID. It can be submitted, queried, modified, or dis-
played as a unit. The jobs in the collection are called subjobs.

Job Array Identifier
The reqID returned when submitting a job array, e.g., 1234.

Job Array Range
A set of subjobs within a job array.

Subjob Individual entity within a job array.

Subjob Index
The unique index which differentiates one subjob from another.
This must be a non-negative integer. E.g., 1234[7], where
1234[] is the job array itself, and 7 is the index.

89

90 CHAPTER 11. JOB ARRAYS

Subjob Identifier (SJID)
A SJID identifies one or more subjobs.SJID

Syntax: reqID[ID] where reqID is the request-ID of the job
array and ID may comprise comma separated job array ranges.
E.g., 1234[5] or 1234[1-8:2,26]. The syntax is explained in
11.3

11.3 Identifier Syntax

To identify the job array itself use the reqID returned by ccsalloc.
Identifying subjobs is done by the subjob index or by subjob ranges.
Syntax: <first>-<last>[:stepping factor], ...

• first, last, and stepping factor must be integers >= 0.

• stepping factor defaults to 1.

• <first>-<last> may be a single number to allow different indexes.

• last must be greater equal than first.

• If last is not a multiple of stepping factor above first, it will not
be used as an index value, and the highest index value used will be
lower than last.

Since some shells, for example csh and tcsh, read ’[’ and ’]’ as shell
metacharacters, job array names and subjob names should be enclosed in
double quotes for all OpenCCS commands.

11.3.1 Examples

• 1234 or 1234[] is the job array.

• 1234[X] is the sub-job with index X.

• 1234[X-Y:Z] are the sub-jobs with indexes X to Y with stepping Z.

• 1234[X-Y:Z,A-B:C] are sub-jobs with indexes X to Y with stepping Z

and indexes A to B with stepping C.

• 1234[1-8:3] results in indexes 1,4, and 7.

• 1234[1-8:3,35,1000-2000:500] results in indexes 1, 4, 7, 35, 1000,
1500, and 2000.

11.4. ENVIRONMENT VARIABLES SET BY OPENCCS 91

11.4 Environment Variables set by OpenCCS

For each subjob OpenCCS sets two environament variables on the boot
node:

CCS ARRAY INDEX

The subjob index of the job in the array, e.g., 2.

CCS ARRAY ID

the request-ID of the job array, e.g., 1234.

11.5 Limits

The administrator may specify two limits relevant to job arrays:

Number of subjobs
limits the number of subjobs in a single job array.

Number of jobs
limits the total number of jobs for a user or a group (including
all subjobs). This limit overrules the number of subjobs limit.

11.6 Submission

A job array is submitted like a normal job by using the ccsalloc command.
The subjob indexes are specified by the parameter -J <SJID>. The subjob-
identifier follows the syntax described in 11.3.
Example: ccsalloc -J ’17-100:3, 128’ myJob.sh

If the job array comprises more than 500 subjobs, ccsalloc prints all
500 planned subjobs a progress message while planning the subjobs. One
can interrupt the ccsalloc command by typing CTRL-C, but OpenCCS will
continue to plan the job array. Use ccskill to kill a job array.

Caveats

• Job arrays with interactive subjobs are not allowed.

• Specifying a fixed start time (ccsalloc -s) or a deadline (ccsalloc -e)
is not allowed.

• Specifying an earliest start time (ccsalloc -a) is possible.

11.7 File Naming

The file names are built as described in 6.5.6. The default file names for
subjobs are:

92 CHAPTER 11. JOB ARRAYS

STDIN /dev/null, which means no input.

STDOUT <job name>.%A.%a.out

STDERR <job name>.%A.%a.err

%A is the reqid of the job array.
%a is the subjob index.
%A and %a may be used as a placeholders while specifying the file names.
E.g., ccsalloc -o MYLOG-%A.out.%a will create a file where %A is replaced
by the reqID of the job array and %a is replaced by the subjob index. If the
job is no subjob, then %A and %a will be replaced by the job’s reqID.

11.8 Tracefiles

Subjobs do not have an own tracefile. OpenCCS logs all events (including
the subjob events) in the job array tracefile. For subjobs, the field reqID is
then replaced by the subjob identifiere (SJID).

11.9 Exit Status

The exit status of a job array is determined by the status of each of the
completed subjobs. It is only available when all subjobs have completed.

0 All subjobs of the job array returned an exit status of 0. No
OpenCCS error occurred. Deleted subjobs are not considered.

1 At least 1 subjob returned a non-zero exit status. No OpenCCS
error occurred.

2 A OpenCCS error occurred.

11.10 Checking Status

This section describes the differences to the normal behaviour of the ccsinfo
command. For detailed information about ccsinfo refer to 8.

ccsinfo -s --summary

Shows the number of job arrays in the system.

ccsinfo -s --dist

Job arrays itself are not counted, only subjobs.

ccsinfo -s

• Subjobs in state PLANNED are not shown. Only the job
array itself is listed.

• To see only job arrays, use ccsinfo -s --type=array

11.11. ALTERING 93

• To see all subjobs of job array 1234, use ccsinfo -s 1234[]

• To see specific subjobs of job array 1234, use ccsinfo -s

1234[SJID]. Where SJID is a subjob identifier as described
in 11.3. Unknown indexes are ignored.

• The parameter --fmt=%s will show the subjob index.

• The parameter --fmt=%d will show the share of completed
jobs of a job array in percent. For a job array, this is the
number of subjobs completed or deleted divided by the
total number of subjobs. For a (sub)job, it is the time
used divided by the time requested.

• all ccsinfo filters are applicable.

ccsinfo <reqID>

The detailed information about a job array shows a summary
of the states of all subjobs:

Number of subjobs : 2000

Completed subjobs : 137

Running subjobs : 57

Planned subjobs : 1806

Waiting subjobs : 0

Examples ccsalloc -J’1-10:2,36’ myJob.sh will create a job array
with this subjob-IDs: 1,3,5,7,9,36. If we assume the reqID of the job array
is 1234, then:

• ccsinfo -s 1234[1-100:3,36] will show only subjobs 1, 7, and 36.

• to show information about the subjobs of job array 1234 with indexes
1,7,9 and state ALLOCATED or PLANNED use
ccsinfo -s 1234[1,7,9] --state=r,p.

• ccsinfo -s 1234[] --state=r will show all running subjobs.

11.11 Altering

As like normal jobs one can change nearly all characteristics of a job array.
However, one cannot alter single subjobs. Only the whole job array can be
altered. For detailed information about ccsalter refer to 9.1.

If the job array comprises more than 500 subjobs, ccsalter prints all 500
subjobs a progress message while altering the subjobs. One can interrupt
the ccsalter command by typing CTRL-C, but OpenCCS will continue to
alter the job array.

94 CHAPTER 11. JOB ARRAYS

Caveats

• Altering the job-indexes (-J) is not possible.

• Specifying a fixed start time (ccsalloc -s) or a deadline (ccsalloc -e)
is not allowed.

• Altering the resourcese (--res), the group (-g), or the maximum run-
time (-t) is only possible if there were no subjobs started.

11.12 Holding/ Resuming

Using ccsalter one can hold / resume whole job-arrays. Holding a job-
array affects only subjobs in state PLANNED. Subjobs in state hold are
counted to state WAITING if printing detailed job-array information.

11.13 Killing

Killing the whole job array is done by using ccskill <reqID>. If the job
array comprises more than 500 subjobs, ccskill prints all 500 subjobs a
progress message while killing the subjobs. One can interrupt the ccskill

command by typing CTRL-C, but OpenCCS will continue to kill the job array.
Killing subjobs can be done by using ccskill <SJID>. Unknown indexes
are ignored.
Example: ccskill 1234[1-100:3, 45-90:5].

11.14 Signalling

Sending a signal to all running subjobs of a job array use
ccssignal <signal> <req_identifier>[...].
Sending a signal to specific subjobs of a job array use
ccssignal <signal> <SJID>[...]. Unknown indexes are ignored.

11.15 Sending Messages

Sending a message to all running subjobs of a job array use
ccsmsg [-e] [-o]<msg> <req_identifier>[...].
Sending a signal to specific subjobs of a job array use
ccsmsg [-e] [-o]<msg> <SJID>[...]. Unknown indexes are ignored.

11.16 User Notification

Using the ccsalloc parameter -mb will send a mail if the first subjob of the
job array started.

11.17. JOB ARRAYS IN RESERVATIONS 95

Using the ccsalloc parameter -me will send a mail if all subjobs are finished.
Please note, that if using email notification OpenCCS will not send mails
for each subjob. One can activate email notification for subjobs by using
the ccsalloc parameter -m switch s. Refer also to 6.5.3.

11.17 Job Arrays in Reservations

Job arrays may be submitted / altered to a reservation like normal jobs.
However, altering a job array or the reservation may lead to subjobs in
state WAITING if not all subjobs can be planned within the reservation
interval.

96 CHAPTER 11. JOB ARRAYS

Appendix A

ccsalloc Man Page

A.1 SYNOPSIS

1. ccsalloc [options] [job file [job file args]]

2. ccsalloc [options] [worker [worker args] –] [job [job args]]

3. ccsalloc [options] [job [job args]]

A.2 DESCRIPTION

ccsalloc is used to submit jobs, job arrays, or reserve resources managed
by CCS. You can submit batch jobs, interactive jobs, start an interactive
session, or reserve resources in advance. For a job submission, CCS needs
this information:

• The resources to allocate.

• How long the job will run.

• The corresponding executable.

A.2.1 Script Jobs

Jobs can be submitted using ccsalloc (e.g., ccsalloc job.sh).
If job.sh is a script file, it may contain directives describing the job, followed
by the job itself. Directives can be set by adding comments with the follow-
ing syntax to the job script:
#CCS OPTION [VALUE].
If directives are given multiple times, first match wins. The possible options
in the script directives are the same options as the ccsalloc command line
options.

97

98 APPENDIX A. CCSALLOC MAN PAGE

A.2.2 Jobs Without a Job Script

Jobs can be submitted with the following syntax:
ccsalloc [args] <worker> [worker_args][--] <job> [job_args]

Jobs are regularly executed as batch jobs. The specification of the used
island has to be the first element of the [args] list.

A.2.3 Simple Jobs

Simple jobs may also be submitted without selecting a worker by calling
ccsalloc <job>[job_args].

A.2.4 Interactive Jobs

By using the option -I one can submit interactive jobs. The -I option is
ignored in a script directive. The streams STDIN, STDOUT, and STDERR are
then connected to the submitting terminal. When the job starts to exe-
cute, all input to the job is from the terminal session in which ccsalloc is
running. When an interactive job is submitted, the ccsalloc command will
not terminate when the job is submitted. It will remain running until the
job terminates, or is aborted. When connected to the job, the terminal
characteristics are changed in the following way:

Control-C Sends the signal SIGINT to the job.

Control-Z Acts as usual with one exception. If you type bg in your Unix-
shell to put the job into the background, the output (STDOUT, STDERR)
will be redirected as described in section ’THE VIRTUAL TERMI-
NAL’.

^S, ^Q will act as usual.

A.2.5 Reservations

One can reserve resources in advance and then submit jobs to the reserved
resources. A reservation consists of three components. The resource specifi-
cation, the time specification, and optionally a list of users and / or groups
which may use the reserved resources.

A.2.6 Job Arrays

Job arrays may be submitted by:
ccsalloc -J ’<first>-<last>[:stepping],...’ <job>[job_args]

For detailed syntax refer to option -J below or the CCS ’User Manual’.

A.2. DESCRIPTION 99

A.2.7 Specifying Resources

Syntax

The user may specify resources by:
ccsalloc --res="resource_name[=value][,resource_name[=value],...]"

resource_name is the name of an allocatable resource (which is generic or
system dependent). ccsinfo shows the allocatable resources. A resource
name:

• Is not case sensitive.

• May include white spaces between ’=’ or ’,’.

• May be a resource set specification, a placement specification, or a job
wide resource specification.

The option --res may be used serveral times. The parameters will be
concatenated.

Resource Set / Chunk Specification

A resource set (also named chunk) specifies a set of resources that have to
be allocated as a unit on one node. Chunks cannot be split across nodes.
Resource sets are specified using the keyword "rset".

Syntax: rset=[N:]chunk[+[N:]chunk...]

If N is not specified, it is set to 1. A chunk comprises one or more res=value
statements separated by a colon.
Examples:

• ncpus=2:mem=10g:hostname=Host1

• ncpus=27:vmem=20g:arch=linux+4:acc=fpga

Placement Specification

This specification controls how the chunks are placed on the nodes.
Syntax: place=[arrangement][:sharing][:grouping][:ignore]

• Arrangement is one of free, pack, or scatter.

• Sharing is one of excl or shared.

• Grouping can have only one instance of group=resource.

• Ignore is a ’;’ separated list of hostnames, which should be excluded
from mapping (ignore=’H1;H2,...’).

Default is: free:shared

100 APPENDIX A. CCSALLOC MAN PAGE

Job-Wide Resources

Job-wide resources are assigned to the system level (i.e.,they are not tied to
specific nodes) and may be used for requesting floating licenses or other re-
sources, such as cput or walltime. Job-wide resources can only be requested
outside of an rset statement. Not allowed are: arch, hostname, mem, nc-
pus, and vmem.
Syntax: keyword=value[,keyword=value ...]

Example: --res=sw=g03

A.3 OPTIONS

-a, –after=WHEN Time after which the job is eligible for execution.
WHEN may be given as absolute time with format Datetime or, if the
time should be relative to now, as ’+’Timespan.

–admin Enable admin mode if caller is a registered CCS admin).

–allowed=LIST, ... LIST is a comma separated list of users and/or groups
who are allowed to submit jobs to the reserved resources.

-c, –cores=NUMBER Number of requested CPU cores.
Format: Unity

-C PREFIX Change prefix used for directives in a job script.

–cwd=DIRECTORY Use DIRECTORY as working directory for execu-
tion.
If not given, the directory where the job was submitted is used.

–debug=DEBUG LEVEL The DEBUG LEVEL argument is a string
which consists of either the word ”all”, or one or more of the characters
”c”, ”e”, ”i”, and ”m” .

all enable all debug messages,

c enable comm-layer debug messages,

e enable event-layer debug messages,

i enable internal debug messages,

m enable message-layer debug messages.

A default value can be set. Refer to section ENVIRONMENT.

-d, -t, –duration, –time,–walltime=DURATION Set the maximum
duration to use the resources. Default unit is second.
If you do not specify a value, a site specific value will be taken. It can

A.3. OPTIONS 101

be shown by ccsinfo --default. A default value can be set. Refer
to section ENVIRONMENT. If the maximum duration is exceeded,
the job will be terminated.
Format: Timespan

-e, –endtime=WHEN Deadline of a job.
Format: Datetime.

-g, –group=NAME Set the group name.
A default value can be set. Refer to section ENVIRONMENT.
NAME is not case sensitive.

-h, –help=[OPTION] Show help.
OPTION is specified without hyphens (’-’).

-i, –island=NAME Specify the CCS island to be used.
Must be the first argument. A default value can be set. Refer to sec-
tion ENVIRONMENT.

-I, –interactive Interactive job or interactive shell.

-j, –join=[HOW] Joining of STDOUT and STDERR streams.
HOW is one of the following:

n Do not join STDOUT and STDERR.

oe join STDERR into STDOUT.

eo join STDOUT into STDERR.

If HOW is not given, joining is set to ’oe’.
If joining is not set it defaults to ’n’.
Format: String

-J, –jobarray=SJID,... specifying a job array.
SJID is a subjob identifier. Syntax: first - last [:stepping]

first is the first index, last the last index, and stepping the step-
ping factor. All of them must be integers >= 0.

stepping defaults to 1.

If last is not a multiple of stepping above first, it will not be
used as an index value, and the highest index value used will be
lower than last.

Not allowed are interactive subjobs, a specific start time or a deadline.
Format: String

102 APPENDIX A. CCSALLOC MAN PAGE

-M, –mail=RECIPIENT [,...] RECIPIENT is an ACCOUNT@DOMAIN
string.
CCS will send all emails to the stated recipient(s). A default value
can be set. Refer to section ENVIRONMENT.
Defaults to: no mail address given.

-m, –notifyuser=EVENTS Specifies the set of conditions under which
CCS will send mail messages about the job.
EVENTS is a string which consists of either the single character ’n’,
or one or more of the characters ’a’, ’b’, ’e’, ’r’, ’s’, and ’w’.

a Send mail if job is aborted by CCS.

b Send mail when job begins execution.

e Send mail when job ends execution.

n Do not send mails.

r Send mail if job start has been re-planned.

s Send mail for each subjob of a job array.

w Send warning mails. E.g.: resource could not be allocated, reserva-
tion unused, runtime expires soon, ...

A default value can be set. Refer to section ENVIRONMENT.
If not set it defaults to: ’n’.

-N, –name=NAME Specifies a name for the request.
The name specified may be any length.
A default value can be set. Refer to section ENVIRONMENT.
If not specified the request name will be the base name of the job script
file or the executable specified on the command line. If an interactive
shell is requested, the request name will be set to INT. If a reservation
is requested, the request name will be set to RSV.

-n, –nodes=NUMBER Number of exclusively requested nodes.
Format: Unity

–notifyjob=HOW,WHEN HOW specifies a command or a signal which
is executed/ sent to the job before the resource is released.

cmd Is an executable. It will have the same environment variables as
the initial job started on the boot node.

signal Can be given as: [-]<digit> or [-][SIG]<signal>.

WHEN Is a timespan. It must be >= 60s.

Setting HOW and WHEN to 0 (eg. -notifyjob 0, 0) disables this feature.
A default value can be set. Refer to section ENVIRONMENT. If not
set it defaults to: 0, 0 (ie., do not notify the job.)
Examples:

A.3. OPTIONS 103

• --notifyjob=$HOME/bin/myScript.sh,10m

Executes $HOME/bin/myScript.sh 10 minutes before the resource
is released.

• --notifyjob=XCPU, 135

Sends the signal SIGXCPU 135 seconds before the resource is
released.

• --notifyjob -9,600

Sends the signal SIGKILL 10 minutes before the resource is re-
leased.

-o, –output=FILE, –stdout=FILE Specifies the path for the STDOUT

redirection.
The path may be absolute or relative. In the latter case it is assumed
relative to the submit directory.
A default value can be set. Refer to section ENVIRONMENT. If not
given it defaults to: job-name.<reqID>.out, whereby <reqID> is the
request-ID assigned by CCS.

-q, –quiet Be quiet.
No logging messages will be printed. If submission was successful
ccsalloc prints the request-iD to stdout.

–res=RES LIST RES LIST is a comma separated list of ’resource=value’
strings.
Resource is the name of an allocatable resource (which is generic or
system dependent). ccsinfo -a shows the allocatable resources. For
more details, refer to ’Specifying Resources’ or the CCS ’User Manual’.

–rsvid=reqID Request-ID of a previously made reservation.
Used to submit jobs to previously reserved resources.

-s, –starttime=WHEN The job should start exactly at time WHEN or
never.
WHEN may be given as absolute time. Format: Datetime
or, if the start time should bee now, use ’now’
or if the time should be relative to now, use ’+’timespan.
If this option is not specified, CCS tries to start the job as soon as
possible.

–stderr=FILE Specifies the path for the STDERR redirection.
The path may be absolute or relative. In the latter case it is as-
sumed relative to the submit directory. If not given it defaults to:
job-name.<reqID>.err, whereby <reqID> is the request-ID assigned
by CCS.

104 APPENDIX A. CCSALLOC MAN PAGE

–stdin=FILE If given, the STDIN stream will be read from this file.
The path may be absolute or relative. In the latter case it is assumed
relative to the submit directory. If not given it defaults to: /dev/null,
which means no input.

–tracefile=FILE Specifies the path for the trace file.
The path may be absolute or relative. In the latter case it is assumed
relative to the submit directory. The following keywords may be used
while specifying:

• %reqid will be replaced by the reqID.

• %x will be replaced by the job name.

E.g.: ccsalloc --tracefile=myTRC%reqid.trace will create a file
named
myTRC<reqID>.trace whereby <reqID> is the request-ID assigned by
CCS.
If given CCS writes all state changes into this file.

–usage Show usage.

-v, –verbose=NUMBER The higher the value the verbose ccsalloc will
be.
Format: Unity

-V, –version Print version.

–whelp=WORKER Show worker help.

worker worker opts [–] cmd [cmd args] Worker are tools to start jobs
under specific run time environments (e.g., abaqus, gaussian, ompi,. . .).
If you start ccsalloc without any parameter, it will show the currently
available workers.

A.4 KEYWORDS USABLE AT REDIRECTION

The following keywords may be used while specifying redirections for STDIN,
STDOUT, and STDERR.

• %A will be replaced by the reqID of the related job array. If the job is
no subjob, then %A and will be replaced by the job’s reqID.

• %a will be replaced by the subjob index of a job array subjob. If the
job is no subjob, then %a will be replaced by the job’s reqID.

• %reqid will be replaced by the reqID.

• %x will be replaced by the job name.

A.5. THE VIRTUAL TERMINAL 105

A.5 THE VIRTUAL TERMINAL

The redirections of STDOUT and STDERR become active if the connection
between the user interface (UI) on the frontend and the Execution Manager
(EM) on the compute host gets lost. This may be caused by:

• Typing CTRL-Z bg in the terminal

• A crash of the UI

• A forced shutdown of the UI

• A crash of the frontend

All output which is not explicitly redirected into files will be buffered by the
EM and (if the buffer gets full) redirected into the specified files. If you have
specified a redirection into a file and the file cannot be opened, CCS aborts
the job.

One can reconnect the application with the ccsbind command. The
applications streams (STDIN, STDOUT, and STDERR) will then be redirected
to the terminal. ccsbind can only be used for interactive jobs.

A.6 EXIT STATUS

Upon successful processing, the exit status will be a value of zero.
If the command fails, the command exits with a value greater than zero.

A.7 ENVIRONMENT

If an option is not specified via a CLI switch, ccsalloc first looks for a
corresponding environment variable. If the environment variable is not
specified, the file $HOME/.ccsrc/uirc.ISLAND_NAME will be checked, where
ISLAND_NAME is derived from the environment variable CCS_UI_DEF_ISLAND.
If such a file does not exist, the file $HOME/.ccsrc/uirc is checked.

If no value has been found, a compile time default value will be taken.
An example file can be copied from $CCS/examples/uirc.
ccsalloc scans for the following (in alphabetic order) default values.

CCS UI ADMIN <ON|OFF> Related CLI switch --admin.
Defaults to: OFF.

CCS UI BG OUTPUT FILE Related CLI switch -o.
Defaults to: /dev/null.

CCS UI DEF DURATION <timespan> Related CLI switch -d.
Defaults to: ’10m’.

106 APPENDIX A. CCSALLOC MAN PAGE

CCS UI DEBUG DEBUG LEVEL Related CLI switch --debug.
Defaults to: no debug mode.

CCS UI DEF EMAIL RECIPIENTS MAIL LIST Related CLI switch --mail.
Defaults to: not specified.

CCS UI DEF GROUP NAME Related CLI switch --group.
Defaults to: not specified.

CCS UI DEF ISLAND NAME Related CLI switch -i.
Defaults to: not specified.

CCS UI DEF NOTIFY JOB HOW,WHEN Related CLI switch --notifyjob.
Defaults to: no notification.

CCS UI DEF NOTIFY USER MAIL OPTIONS Related CLI switch --notifyuser.
Defaults to: no notification.

CCS UI NOHUP <ON|OFF> If set to ON prevents the user-interface to break
the connection to a running,interactive job if catching the SIGHUP sig-
nal. The catched signal will be sent to the job instead.
Defaults to: no notification.

CCS UI REQ NAME NAME Related CLI switch --name.
Defaults to the base name of the job script file or the executable spec-
ified on the command line. If an interactive shell is requested, the
request name will be set to INT. If a reservation is requested, the re-
quest name will be set to RSV.

CCS UI RC FILE FILE Specifies an alternative CLI rc file.
Defaults to: $HOME/.ccsrc/uirc. NOTE: Can only be specified in
the environment.

CCS UI WORKER FILE FILE Specifies an alternative worker configuration file.
Defaults to: $CCS/etc/<island>/worker.conf. NOTE : Needs ad-
min privileges and can only be specified in the environment.

A.8 Job Environment

When submitting a job, OpenCCS copies the process environment and re-
builds it on the execution host before starting the job.

A.8.1 The Node File

OpenCCS creates a file containing the node names allocated to a job. The
file name is stored in the environment variable CCS NODEFILE. Each node
appears once in a single line. The file will contain the names of the allocated

A.8. JOB ENVIRONMENT 107

nodes with each name repeated N times, where N is the number of mpiprocs
specified for all chunks allocated on that node. mpiprocs is the number of
MPI instances per chunk and defaults to 1. The order in which nodes appear
in the node file is the reverse order in which chunks were specified in the
--res=rset directive.

A.8.2 Execution Host Environment Variables

OpenCCS additionally sets the following environment variables on the exe-
cution host:

CCS Path to the OpenCCS installation.

CCS ARCH Defines the local architecture (e.g., LINUX32 or LINUX64). Used
to find an architecture dependent executable.

CCS ARRAY ID For a subjob, the request-ID of the related job array.

CCS ARRAY INDEX For a subjob, its index in the related job array.

CCS ISLAND The island name

CCS MAPPING A string describing the mapping of the job.
Syntax: hostname:=chunk[+chunk..][,hostname...]
and chunk is: count:name=val[:name=val]
Example:CCS MAPPING=node01:=1:ncpus=2:mem=4g, node35:=1:ncpus=5:mem=180g

CCS NODEFILE Absolute path of the node file.

CCS NODES A space separated list of the node names of the allocated re-
sources.

CCS REQID The request-ID.

CCS REQNAME The request name.

CCS TMPDIR The path of the request specific, node local temporary direc-
tory. At allocation time, CCS creates a node local directory named
<path>/<reqID>. The value of <path> is set by the CCS administra-
tion. This directory can be used by applications for writing tempo-
rary files during runtime. The directory will be removed automatically
when releasing the partition.

CCS UMASK Value of the current umask.

NCPUS For the MPI process with rank 0. Set to the value of ncpus requested
for the related chunk. For other MPI processes, behavior depends on
the MPI implementation.

108 APPENDIX A. CCSALLOC MAN PAGE

OMP NUM THREADS For the MPI process with rank 0. Set to the value of
ompthreads. For other MPI processes, behavior depends on the MPI
implementation.

TMPDIR Same as CCS TMPDIR.

A.9 FILES

$HOME/.ccsrc/uirc[.ISLAND_NAME] specifies default values for the CCS
commands.

A.10 EXAMPLES

Refer to the CCS ’User Manual’ for more detailed examples.

1. Getting an interactive shell on the boot node.

ccsalloc -I

Allocates 1 core for 10 minutes and gets you an interactive login shell
on the boot-node of the partition. After leaving the shell the resouces
are released automatically.

2. Batch jobs using a job script file
Write a shell script and use the ccsworker wrapper.

#! /bin/sh

#CCS -c 64

#CCS -t 2h

#CCS -o MYFILE-%A.out.%a

cp foo bar

ccsworker mpich -- hello -F 123

rm foo

#use only 32 of the requested 64 cores

ccsworker openmpi -ni 32 -- goodbye -o results

exit 0

Submit this job via ccsalloc myScript.sh

3. Interactive jobs

ccsalloc -I hostname

4. Batch Job with redirection

A.11. SEE ALSO 109

ccsalloc -o job.%reqid.out --stderr=%reqid.err hostname

5. Use grouping

ccsalloc --res=rset=10:npcus=12:mem=20g,place=scatter:group=switch

All chunks should be mapped to the same switch.

6. Submit a job array

ccsalloc -J ’12-35:5,1000-1500:100,45-68’ myJob.sh

7. Make a reservation

ccsalloc -s +1h -e 23:00 -c 10 --allowed="user1,group1"

Reserves 10 cores, starting in one hour, ending at 11 pm. In addition
to the submitting user user1 and all members of the group group1 may
use the reserved resources .

8. Use a reservation

ccsalloc --rsvid=23 -c 4 myjob.sh

Submits the job script to the reservation with the ID 23.

A.11 SEE ALSO

ccsalter(1), ccsbind(1), ccsinfo(1), ccskill(1), ccsmsg(1), ccssignal(1), cc-
stracejob(1), ccsworker(1), ccs resource formats(7), the CCS ’User Manual’.

A.12 AUTHORS

Paderborn Center for Parallel Computing
ccs-team@uni-paderborn.de

http://pc2.uni-paderborn.de

http://openccs.eu

110 APPENDIX A. CCSALLOC MAN PAGE

Appendix B

ccsalter Man Page

B.1 SYNOPSIS

ccsalter [options] req identifier ...

B.2 DESCRIPTION

Nearly all attributes of a request (job (array) or reservation) may be al-
tered after submission, using the ccsalter command. Several requests can
be altered simultaneously. If one value cannot be altered for a request, the
whole alteration of this request fails. The resource definition can be done
using the same shortcuts as in ccsalloc. New values have to be given as
absolute values. E.g., resources must not be specified relatively (e.g., -c+2).
Exceptions are the time related attributes:

start time -a 0 or -s 0 both remove the (minimum) start time.

runtime Accepts an absolute value or ’+|-’timespan.

stop time -e 0 removes the end time.

B.3 OPTIONS

-a, –after=WHEN Alter the time after the job becomes eligible.
WHEN may be given as absolute time with format Datetime.
If the time should be altered relatively to the set use ’+|-’Timespan.
If the time should be removed, use ’0’.
If altering a reservation, all related jobs are re-planned.

–admin Enable admin mode (if caller is a registered CCS admin).

–allowed=LIST, ... LIST is a comma separated list of users and/or groups
who are allowed to submit jobs to the reserved resources.

111

112 APPENDIX B. CCSALTER MAN PAGE

-c, –cores=NUMBER Number of requested CPU cores.
Format: Unity

–cwd=DIRECTORY Use DIRECTORY as working directory for execu-
tion.

–debug=DEBUG LEVEL The DEBUG LEVEL argument is a string
which consists of either the word ”all”, or one or more of the characters
”c”, ”e”, ”i”, and ”m” .

all enable all debug messages,

c enable comm-layer debug messages,

e enable event-layer debug messages,

i enable internal debug messages,

m enable message-layer debug messages.

A default value can be set. Refer to section ENVIRONMENT.

-d, -t, –duration, –time,–walltime=DURATION Alter the maximum
duration to use the resources.
If the duration should be altered relatively to the set duration, use
’+|-’Timespan.
Default unit is second.
If altering a reservation, all related jobs are re-planned.

-e, –endtime=WHEN Alter the time at which the job should end (i.e.,
the deadline).
WHEN may be given as absolute time with format Datetime.
If the deadline should be altered relatively to the set one, use ’+|-
’Timespan.
If the deadline should be removed, use ’0’.
If altering a reservation, all related jobs are re-planned.

-g, –group=NAME Set the group name.
NAME is not case sensitive.
If altering a reservation, all related jobs are re-planned.

-h, –help=[OPTION] Show help.
OPTION is specified without hyphens (’-’).
Format: String

–hold Put jobs in state hold.
This means the job will be ignored while planning the schedule and
not started until resumed or killed.
A job in state hold may be altered, killed, or resumed.

B.3. OPTIONS 113

Reservations and single job-array subjobs cannot be altered to state
hold. Using –message one can give a message to the user.

-i, –island=NAME Specify the CCS island to be used.
Must be the first argument.
Format: String A default value can be set. Refer to section ENVI-
RONMENT.

-j, –join=[HOW] Joining of STDOUT and STDERR streams.
HOW is one of the following:

n Do not join STDOUT and STDERR.

oe join STDERR into STDOUT.

eo join STDOUT into STDERR.

If HOW is not given joining is set to ’oe’.
If joining is not set it defaults to ’n’.
Format: String

-M, –mail=RECIPIENT [,...] RECIPIENT is an ACCOUNT@DOMAIN
string. CCS will send all emails to the stated recipient(s).

–message[MESSAGE] Used in conjunction with –hold.
MESSAGE is a text which may be used to notfiy the user about the
reason for holding the job.
Format: String

-m, –notifyuser=EVENTS Specifies the set of conditions under which
CCS will send mail messages about the job.
EVENTS is a string which consists of either the single character ’n’,
or one or more of the characters ’a’, ’b’, ’e’, ’r’, and ’w’.

a Send mail if job is aborted by CCS.

b Send mail when job begins execution.

e Send mail when job ends execution.

n Do not send mails.

r Send mail if job start has been re-planned.

w Send warning mails. E.g.: resource could not be allocated, reserva-
tion unused, runtime expires soon, ...

-N, –name=NAME Specifies a name for the request.
The name specified may be any length.

114 APPENDIX B. CCSALTER MAN PAGE

-n, –nodes=NUMBER Number of exclusively requested nodes.
Format: Unity
If altering a reservation, all related jobs are re-planned.

–notifyjob=HOW,WHEN HOW specifies a command or a signal which
is executed/ sent to the job before the resource is released.

cmd Is an executable.

signal Can be given as: [-]<digit> or [-][SIG]<signal>.

WHEN Is a timespan. It must be >= 60s.

Setting HOW and WHEN to 0 (eg. -notifyjob 0, 0) disables this feature.

-o, –output=FILE Specifies the path for the stdout redirection. The
path may be absolute or relative. In the latter case it is assumed
relative to the submit directory.
The keyword ’%reqid’ will be replaced by the request-ID.
E.g.: ccsalloc -o myFILE%reqid.out will create a file named myFILE$<$reqID>.out

whereby <reqID> is the request-ID assigned by CCS.

-q, –quiet Be quiet.
No logging messages will be printed.

–res=RES LIST RES LIST is a comma separated list of ’resource=value’
strings.
Resource is the name of an allocatable resource (which is generic or
system dependent). ccsinfo -a shows the allocatable resources. For
more detailed information, refer to ccsalloc(1) or the CCS ’User Man-
ual’.
If altering a reservation, all related jobs are re-planned.

r, –resume Resume jobs from state hold to state Planned.

–rsvid=req identifier Alter the reservation, the job should run in.
Use ’0’ if request should not be assigned to any reservation.

-s, –starttime=WHEN Alter the start time.
WHEN may be given as absolute time. Format: Datetime.
If the start time should bee now, use ’now’.
If the time should be relative to the set one, ’+|-’Timespan.
If the start time should be removed, use ’0’.
If altering a reservation, all related jobs are re-planned.

–stderr=FILE Specifies the path for the stderr redirection. The path
may be absolute or relative. In the latter case it is assumed relative
to the submit directory. The keyword ’%reqid’ will be replaced by the

B.4. KEYWORDS USABLE AT REDIRECTION 115

request-ID.
E.g.: ccsalloc --stderr myFILE%reqid.err will create a file named
myFILE<reqID>.err whereby <reqID> is the request-ID assigned by
CCS.

–stdin=FILE If given, the stdin stream will be read from this file. The
path may be absolute or relative. In the latter case it is assumed
relative to the submit directory.

–tracefile=FILE Specifies the path for the trace file. The path may be
absolute or relative. In the latter case it is assumed relative to the
submit directory. The following keywords may be used while specify-
ing:

• %reqid will be replaced by the reqID.

• %x will be replaced by the job name.

E.g.: ccsalloc –tracefile=myFILEwill create a file named myFILE<reqID>.trace

whereby <reqID> is the request-ID assigned by CCS. CCS writes all
state changes into this file.

–usage Show usage.

-V, –version Print version.

-v, –verbose=NUMBER The higher the value the verbose CCS will be.

req identifier ...> A req identifier is either a reqID, a request name, or
a subjob identifier. They can be mixed. For the syntax of a subjob
identifier refer to ccsalloc(1) or the CCS ’User Manual’.

B.4 KEYWORDS USABLE AT REDIRECTION

The following keywords may be used while specifying redirections for STDIN,
STDOUT, and STDERR.

• %A will be replaced by the reqID of the related job array. If the job is
no subjob, then %A and will be replaced by the job’s reqID.

• %a will be replaced by the subjob index of a job array subjob. If the
job is no subjob, then %a will be replaced by the job’s reqID.

• %reqid will be replaced by the reqID.

• %x will be replaced by the job name.

116 APPENDIX B. CCSALTER MAN PAGE

B.5 WHAT CAN BE WHEN ALTERED

What When Comment

–after PLANNED,WAITING 1, 2

–allowed always Reservations only. Valid only for new jobs.

–cwd PLANNED,WAITING

–duration always 1,2. A longer duration may be denied if:

• The sum of all requested prolongations ex-
ceeds the limit.

• Planned jobs, which are not best-effort
jobs, would be delayed.

–endtime PLANNED,WAITING 1, 3

–group PLANNED,WAITING 1, 2

–hold PLANNED,WAITING 4

–join PLANNED,WAITING

–mail always

–name always

–notifyjob always

–notifyuser always

–res PLANNED,WAITING 1, 2

–resume WAITING 4

–rsvid PLANNED,WAITING

–starttimes PLANNED,WAITING 1, 3

–stdin PLANNED,WAITING

–stderr PLANNED,WAITING

–stdout PLANNED,WAITING

–tracefile always Alter message is written to the new file.

Notes:
1: For a reservation, only if no job is running in the reservation.
2: For a job array, only if no job was already started in the job array.
3: Not allowed for job arrays.
4: Not for reservations.

B.6 EXIT STATUS

Upon successful processing, the exit status will be a value of zero.
If the command fails, the command exits with a value greater than zero.

B.7. ENVIRONMENT 117

B.7 ENVIRONMENT

If an option is not specified via a CLI switch, ccsalter first looks for a
corresponding environment variable. If the environment variable is not
specified, the file $HOME/.ccsrc/uirc.ISLAND_NAME will be checked, where
ISLAND_NAME is derived from the environment variable CCS_UI_DEF_ISLAND.
If such a file does not exist, the file $HOME/.ccsrc/uirc is checked.

If no value has been found, a compile time default value will be taken.
An example file can be copied from $CCS/examples/uirc.
ccsalter scans for the following (in alphabetic order) default values.

CCS UI ADMIN <ON|OFF> Activate admin mode.
Defaults to: OFF.

CCS UI DEBUG DEBUG LEVEL Related CLI switch --debug.
Defaults to: no debug mode.

CCS UI DEF ISLAND NAME Related CLI switch -i.
Defaults to: not specified.

CCS UI RC FILE FILE Specifies an alternative CLI rc file.
Defaults to: $HOME/.ccsrc/uirc. NOTE: Can only be specified in
the environment.

B.8 FILES

$HOME/.ccsrc/uirc[.ISLAND_NAME] specifies default values for the CCS
commands.

B.9 SEE ALSO

ccsalloc(1), ccsbind(1), ccsinfo(1), ccskill(1), ccsmsg(1), ccssignal(1), cc-
stracejob(1), ccsworker(1), ccs resource formats(7), the CCS ’User Manual’.

B.10 AUTHORS

Paderborn Center for Parallel Computing
ccs-team@uni-paderborn.de

http://pc2.uni-paderborn.de

http://openccs.eu

118 APPENDIX B. CCSALTER MAN PAGE

Appendix C

ccsbind Man Page

C.1 SYNOPSIS

ccsbind [options] req identifier

C.2 DESCRIPTION

ccsbind binds the current UNIX-Shell to the given,interactive job. The
UNIX shell then will act as the controlling terminal for the job indicated
by req identifier. This is useful if the connection to your interactive job was
lost (e.g. due to an network failure).

C.3 OPTIONS

–admin Enable admin mode, if caller is a registered CCS admin.

–debug=DEBUG LEVEL The DEBUG LEVEL argument is a string
which consists of either the word ”all”, or one or more of the characters
”c”, ”e”, ”i”, and ”m” .

all enable all debug messages,

c enable comm-layer debug messages,

e enable event-layer debug messages,

i enable internal debug messages,

m enable message-layer debug messages.

A default value can be set. Refer to section ENVIRONMENT.

-h, –help=[OPTION] Show help. OPTION is specified without hyphens
(’-’).
Format: String

119

120 APPENDIX C. CCSBIND MAN PAGE

-i, –island=NAME Specify the CCS island to be used. Must be the first
argument. A default value can be set. Refer to section ENVIRON-
MENT.
Format: String

-q, –quiet Be quiet. No logging messages will be printed.

–usage Show usage.

-V, –version Print version.

-v, –verbose=NUMBER The higher the value the verbose CCS will be.
Format: Unity

req identifier A req identifier is either a reqID or a request name.

C.4 EXIT STATUS

Upon successful processing, the exit status will be a value of zero.
If the command fails, the command exits with a value greater than zero.

C.5 ENVIRONMENT

If an option is not specified via a CLI switch, ccsbind first looks for a
corresponding environment variable. If the environment variable is not
specified, the file $HOME/.ccsrc/uirc.ISLAND_NAME will be checked, where
ISLAND_NAME is derived from the environment variable CCS_UI_DEF_ISLAND.
If such a file does not exist, the file $HOME/.ccsrc/uirc is checked.

If no value has been found, a compile time default value will be taken.
An example file can be copied from $CCS/examples/uirc.
ccsbind scans for the following (in alphabetic order) default values.

CCS UI ADMIN <ON|OFF> Activate admin mode.
Defaults to: OFF.

CCS UI DEBUG DEBUG LEVEL Related CLI switch --debug.
Defaults to: no debug mode.

CCS UI DEF ISLAND NAME Related CLI switch -i.
Defaults to: not specified.

CCS UI RC FILE FILE Specifies an alternative CLI rc file.
Defaults to: $HOME/.ccsrc/uirc. NOTE: Can only be specified in
the environment.

C.6. FILES 121

C.6 FILES

$HOME/.ccsrc/uirc[.ISLAND_NAME] specifies default values for the CCS
commands.

C.7 SEE ALSO

ccsalloc(1), ccsalter(1), ccsinfo(1), ccskill(1), ccsmsg(1), ccssignal(1), cc-
stracejob(1), ccsworker(1), ccs resource formats(7), the CCS ’User Manual’.

C.8 AUTHORS

Paderborn Center for Parallel Computing
ccs-team@uni-paderborn.de

http://pc2.uni-paderborn.de

http://openccs.eu

122 APPENDIX C. CCSBIND MAN PAGE

Appendix D

ccsinfo Man Page

D.1 SYNOPSIS

ccsinfo [options] [req identifier ...]

D.2 DESCRIPTION

show status about CCS schedule, system, groups and users, and requests.
Refer to the accordant sections.

D.3 GENERAL OPTIONS

–admin Enable admin mode, if caller is a registered CCS admin.

–debug=DEBUG LEVEL The DEBUG LEVEL argument is a string
which consists of either the word ”all”, or one or more of the characters
”c”, ”e”, ”i”, and ”m” .

all enable all debug messages,

c enable comm-layer debug messages,

e enable event-layer debug messages,

i enable internal debug messages,

m enable message-layer debug messages.

A default value can be set. Refer to section ENVIRONMENT.

-g, –group=NAME Set the group name. NAME is not case sensitive.
A default value can be set. Refer to section ENVIRONMENT.

123

124 APPENDIX D. CCSINFO MAN PAGE

-h, –help=[OPTION] Show help. OPTION is specified without hyphens
(’-’).
Format: String

-i, –island=NAME Specify the CCS island to be used. Must be the first
argument. A default value can be set. Refer to section ENVIRON-
MENT.
Format: String

–islands Shows available islands.

–motd Prints the message of the day, if specified by the CCS administra-
tion.

–usage Show usage.

-V, –version Print version.

-v, –verbose=NUMBER The higher the value the verbose CCS will be.
Format: Unity

req identifier ... A req identifier is either a reqID, a request name, or a
subjob identifier. They can be mixed. For the syntax of a subjob
identifier refer to ccsalloc(1) or the CCS ’User Manual’.

D.4 SCHEDULE STATUS

The schedule can be viewed via the option -s|–schedule.
It knows the following sub-options:

–dist=FILTER Shows information about the job distribution, i.e., how
many jobs are in which state. This sub-option is mutual exclusive to
all other ones.
Possible filters are:

all Shows distribution for users and groups.

group Shows distribution for groups.

mine Shows the callers job distribution.

user Shows distribution for users.

FILTER is not case sensitive and may be abbreviated as long as the
abbreviation is unique. Default FILTER is mine.
–dist respects –raw.

–summary Shows summarized schedule information. This sub-option is
mutual exclusive to the other ones.

D.4. SCHEDULE STATUS 125

The following sub-options may be combined:

–group=GROUP LIST Filters for the specified group(s).
GROUP LIST is a comma separated list of group names.

–user=ACCOUNT LIST Filters for the specified account(s).
ACCOUNT LIST is a comma separated list of account names.

–mine Shows only information about the current account.

–state=STATES Filters for requests having a state in the given list.
Possible states: C (Completed), H (Hold), P (Planned), R (Running),
and W (Waiting)
STATES is a comma separated list of the characters ’c’, ’h’, ’p’, ’r’,
and ’w’.

–type=TYPES Filters for requests having a type in the given list. Possi-
ble types: A (Array), B (Batch), I (Interactive), and R (Reservation)
TYPES is comma separated list of the characters ’a’, ’b’, ’i’, and ’r’.

–lines=NUMBER Limits the number of found requests to the given num-
ber.

–fmt=FIELDS Shows only specified fields.
Syntax of FIELDS string is: ’%.NX’

. right justification (optional)

N sizeof field (optional)

X the field specifier.

Example: --fmt="%.R %T %w %.10z %P %50j".
The following fields are available. Fields marked with ’(*)’ are acces-
sible only to the request owner or the administrator. If a field is not
accessible the output is ’N/A’.

C Command line call (*)

D Duration

E Given Deadline

F Submitted from (*)

G Group

J Job notification (*)

M Mail address (*)

N Request name

O Owner

126 APPENDIX D. CCSINFO MAN PAGE

P Planned start time

R ReqID

S Given start time

T Type

U User interface (*)

V Event notification (*)

a Attributes

• A: Mapping at Allocation

• B: Background Priority

• D: Dynamic Limit Extension

• F: Freepool Impact

• L: Limits are checked at runtime

• M: Multihost

• S: Small-Job (Mapped on “Local only” nodes)

’-’ denotes that the attribute is not set.

b Command (*)

c Core Efficiency(*)
Shows cput/walltime and cput/(ncpus*walltime) in percent.
Accuracy depends on the received values from the nodes which
sample and send the data in an administrator defined interval
(e.g., each 10s). Additionally, in some cases OpenCCS is not able
to sample all job resource usage data if the job is using more than
one node. Hence, real values may be sometimes higher.

d Percent Done

e STDERR (*)

i STDIN (*)

j Job resource set

m Mapping

n Node resource set

o STDOUT (*)

p Join (*)

q Priority

r ReqID of related reservation (RSV-ID)

t Trace-File (*)

u User resource set

v Elapsed time

D.5. SYSTEM STATUS 127

w State

x Sub-state

y Release time

z Submission time

–raw Prints in a raw format: No headline, no field formatting. Fields are
separated by ’ ’.

reqID ... One may give reqIDs to scan for. This disables all filters. --lines
and --fmt are still active. Request names are not recognized.
Example: ccsinfo -s --fmt="%.R %T %w %.10z %P %50j" 1134 235.

STATES and TYPES are not case sensitive and may be abbreviated as long
as the abbreviations are unique.
Examples:

%ccsinfo -s --mine --state=r,p --type=b --group=foo,bar RE--lines=3

reqID Name Account State Start Walltime Job-Resource-Set

==

163 ccsHAWAII2B kel PLANNED 18:57:19.04.12 145d vmem=50g,ncpus=17

180 ccsHAWAII6B kel PLANNED 19:11:19.04.12 37h30m mem=512m,ncpus=1

160 kel_2 kel ALLOCATED 17:57:19.04.12 1h vmem=1t,ncpus=4

%ccsinfo -s --mine --state=r,p --type=b --group=foo,bar --lines=3 --raw

163 ccsHAWAII2B kel PLANNED 18:57:19.04.12 145d vmem=50g,ncpus=17

180 ccsHAWAII6B kel PLANNED 19:11:19.04.12 37h30m mem=512m,ncpus=1

160 kel_2 kel ALLOCATED 17:57:19.04.12 1h vmem=1t,ncpus=4

D.5 SYSTEM STATUS

D.5.1 Node Status

Summarized Node Info

-n, –nodeinfo –summary

%ccsinfo -n --summary

State Count

================================

ok 650

offline 2

down 1

down/offline 0

unknown 0

Total 653

Nodes in Use/Exclusive 451/109

128 APPENDIX D. CCSINFO MAN PAGE

Detailed Node Info

-n, –nodeinfo=[NODE, ...] –raw
shows information about the listed nodes.
Giving no node name, shows detailed information about all nodes.
–raw Prints one line per node. Fields are separated by ’ ;’.
Example:

%ccsinfo -n kel123

kel123

rectime = 18:30:23

status = up,online

coordinates = 0,0,0

running jobs = 345,56,7

uptime = 1d4h28m59s since Wed Mar,19 2014 14:21

uname = Linux kel123 2.6.32-35-generic #78-Ubuntu SMP i686

ncpus = 2

totmem = 1652472k

vmem = 1652472k

availmem = 840896k

physmem = 1025980k

loadave = 0.68

sessions = 5906 5756 2478 5815 5853 5880 5890 5899

nsessions = 8

nusers = 2

idletime = 0

only local jobs = false

Brief Node Info

-n, –nodeinfo –fmt[=FIELDS] –raw –reqID[=reqID] –state[=STATE]

–reqID[=reqID] shows only nodes assigned to reqID....
This option is mutual exclusive to –state.
Example:

%ccsinfo -n --reqid=1356

Host State Running Jobs Message

===

kel5 up,online 1356,45

kel78 up,offline 1356 defect hard disk

–state[=STATE] filters for a state. The following states are available:

D.5. SYSTEM STATUS 129

all Does not filter, prints them all.

sick Filters for nodes which are in trouble.

ok Filters for nodes which are active (i.e., UP and ONLINE).

up Filters for nodes which are in state UP.

down Filters for nodes which are in state DOWN.

online Filters for nodes which are in state ONLINE.

offline Filters for nodes which are in state OFFLINE.

unknown Filters for nodes which are in state UNKNOWN. STATE is not
case sensitive and may be abbreviated as long as the abbreviation
is unique.
Example:

%ccsinfo -n --state=’sic’

Host State Running Jobs Message

===

kel245 up,offline 34,45 will be rebooted

kel512 offline - Maintenance

–fmt=FIELDS Shows only specified fields. Syntax of FIELDS string is:
’%.NX’

. right justification (optional)

N sizeof field (optional)

X the field specifier.

Example: --fmt="%.A %p %50i".
The following fields are available:

A Available memory

C Number of cores (ncpus)

H Hostname

J Running jobs

M Physical Memory

L Load

N Note

O Uptime

S Status

U uname

V Virtual Memory

a Architecture

130 APPENDIX D. CCSINFO MAN PAGE

c Coordinates

i Idletime

p Properties

m Minimum resources

r Record time

s Sessions

t Number of sessions (nsessions)

u Number of users (nusers)

If a field is not accessible the output is ’N/A’.

–raw Prints in a raw format: No headline, no field formatting. Fields are
separated by ’ ’.
--fmt and --raw may be used together with --reqid or --state.

D.5.2 Available Workers

–worker shows the system specific available workers.
Example:

%ccsinfo --worker -i HAWAII

ccsinfo: HAWAII provides the following workers:

ccsinfo: Refer also to the man page ccsworker(1) or

call ’ccsinfo --whelp=<worker>’

HAWAII provides the following workers:

Worker Purpose

===

abaqus starts an ABAQUS application

g03 starts a Gaussian-03 application

g09 starts a Gaussian-09 application

mpich2 starts an MPICH2 application

mvapich starts an MVAPICH application

ompi starts an OpenMPI application

starccm starts a STAR-CCM+ application

turbomole starts a Turbomole application

D.5.3 Allocatable Resources

-a, –allocatable shows allocatable resources.
The column Type represents the resource format as described in ccs resource formats(7).
’A’ is String
’B’ is Boolean
’D’ is DateTime
’S’ is Size

D.5. SYSTEM STATUS 131

’T’ is Timespan
’U’ is Unitary
’V’ is String Array.
The column Flags represents the resource categories as described in the
’User Manual’.
’C’ marks a consumable resource
’D’ marks a dynamic resource
’J’ marks a job wide resource
’N’ marks a non alterable resource.
The column Amount prints the used, online, and maximum amount of the re-
lated resource. The online amount depends on the availability of the nodes.
The column Default prints the system default value.
Example:

%ccsinfo -a

Name Type, Amount Default Purpose

Flags Used/Online/Max

==

ncpus U,C 7993/9456/9568 1 number of cores

nodes U,C 294/589/614 1 number of nodes

mem S,C 18.69t/40.12t/40.74t 3g physical memory

vmem S,C 22.33t/49.09t/49.81t 2g virtual memory

cput T, - N/A CPU time

walltime T,J - N/A walltime

hostname A, - N/A hostname

arch A, - N/A host architecture

mpiprocs U, - N/A number of mpi processes per chunk

ompthreads U, - N/A number of threads per chunk

acc B, - N/A node with accelerator card

norm B, - N/A 64GB compute node

phi U,C 0/5/8 N/A Intel Xeon Phi card

smp B, - N/A SMP node

tesla U,C 31/31/32 N/A Tesla K20xm card

sw A,CJ - N/A Software

-a –classes shows allocatable resource classes
The column #Hosts prints the online and maximum number of hosts. Ex-
ample:

%ccsinfo -a --classes

Name Class #Hosts

Online/Max

=====================================

ncpus 16 587/594

132 APPENDIX D. CCSINFO MAN PAGE

32 2/2

nodes 1 589/614

mem 63g 576/582

1009g 2/2

252g 11/12

vmem 84g 31/31

78g 545/551

1t 2/2

267g 11/12

arch SL 6.3 589/614

CENTOS-5.2 25/614

acc false 558/582

true 31/32

norm false 49/62

true 540/552

phi 1 5/8

smp false 587/612

true 2/2

tesla 1 31/32

wash false 578/594

true 11/20

sw g03 -

D.5.4 FreePools

–freepools shows the defined FreePools.
Example:

%ccsinfo --freepools

name= CPUS

resource = ncpus

quantity = 1/50%

allowed = count: 5, runtime: 2h

validity = * 10-20 * * *

name= PHYSICS

resource = ncpus

quantity = 50

allowed = users:kel || groups:+phys || count: 5, runtime: 2h

validity = always

For a description of the columns, refer to the ’User Manual’

D.6. GROUPS / USERS 133

D.6 GROUPS / USERS

D.6.1 Group Membership

–groups shows a list of groups the caller is member of.
Example:

%ccsinfo --groups

Groups: ccsadmin,FoO,pc2guests

D.6.2 Limits and Privileges

-l, –limits shows the limits and privileges. Both are assigned to user and
or groups.
If not using the sub options -gNAME and –user=USER, the CLI takes the
default values of the caller.
Using –user=ALL, shows the group data and all members of the group,
having an own specification.
Example:

%ccsinfo -l

Active policy for jobs exceeding their resource credits is: Reject the job.

Group-Data

==========

name :pc2guests

validity :always

privileges :alter,interactive,reserve

manager :devil

members :+pc2guests

User-Data

=========

account :arnie

validity :until 23:59:31.12

privileges :alter

Resource Limits:

Resource Items Duration Area Validity

===

* unlimited 315d unlimited always

mdce 256 315d unlimited always

tesla 10 120d unlimited always

ncpus 1800 21d unlimited always

jobs 5000 - - from 14:32:10.12.14

arrayjobs 1000 - - always

134 APPENDIX D. CCSINFO MAN PAGE

Alteration limits if request is in state ALLOCATED:

What Limit Validity

==================================

walltime 10s/10% always

Resource Credits (in hours:mm:ss)

Only resources with a specified credit are printed

Resource Credit Used-Credit Remaining-Credit

==

mdce 1000:00:00 0:00:18 999:59:42

tesla 100:00:00 0:03:00 99:57:00

ncpus 2500000:00:00 0:03:00 2499999:57:00

For a description of the columns, refer to the ’User Manual’.

D.6.3 Default Values

–defaults shows default values.
Attribute (the first column) describes the attribute.
Default (the second column) describes the default value. It is taken, if the
caller did not specify the attribute in question.
Force (the third column) shows values which overwrite user given values or
will be taken as a default.

The administrator may assign defaults to specific users, groups, or the
whole system. If both Default and Force are specified, Force will be taken.
If not using the sub options -gNAME and –user=USER, the CLI shows
the default values valid for the caller’s default group.
Example:

%ccsinfo --def

Attribute Default Force

=============================

mem 128m

mdce 128

place free:shared

D.6.4 Used Resources

-u, –usedres shows the currently used resources.
If not using the sub options -gNAME, the CLI takes the default values of
the caller.

Example:

D.7. REQUEST STATUS 135

%ccsinfo -u

Allocated Resources of Group: pc2guests

Resource Limit Allocated (% of Limit)

==

ncpus 1800 1024 (56.88)

mdce 256 128 (50.00)

D.7 REQUEST STATUS

ccsinfo req identifier ... shows detailed information about the specified re-
quest(s). Example:

%ccsinfo 29308

Request-ID : 29308

Name : kel_3

Owner : kel

Group : Foo

Type : Batch

Priority : 1

CLI call : --group=foo go9 -- Scan.com

Submitted from : /pc2/work/kel/2D

Start Time : None

Deadline : None

Submission Time : 13:18

Allocation Time : 13:18

Maximum Runtime : 2w

Release Time : 13:18:03.05 (in 1w6d18h27m)

State : ALLOCATED since 55m56s

User Resource Set : 2:ncpus=1:mem=36g,place=scatter:excl

Job Resource Set : exclnodes=2,mem=124g,vmem=157g,ncpus=32,mpiprocs=32,

place=scatter:excl

Chunks : 2:mem=36g:ncpus=1

Mapping : node513:=mem=62g:ncpus=16,node45:=mem=62g:ncpus=16

Event-Notification : abe---

Emails goto : kel@hell.org

CMD : g09 -- Scan.com

Job notifying : Off

Trace file : None

STDIN : redirected from : /dev/null

STDOUT : redirected to : /pc2/work/kel/2D/Scan.log

STDERR : redirected to : /pc2/work/kel/2D/Scan.log

Stream Joining : n

Resource-Usage :

Item cput mem vmem walltime

136 APPENDIX D. CCSINFO MAN PAGE

==

Summary 22h1m56s 11.44g 25.89g 55m56s

node45 13h27m1s 5.77g 13.13g 55m46s

node513 8h34m55s 5.68g 12.77g 55m56s

D.8 PREDICTING START TIMES

It is sometimes useful to know which resources are when available. For ex-
ample how many GPUs can I get now or how long is the waiting time if
requesting chunks with 5 cores and 6GB per core.
Using -p, –predict =’’<RESOURCES>[;ITERATOR];...’’, one can specify
RESOURCES together with ITERATORS. OpenCCS will evaluate the iterators,
plan the resulting resource request (related to the caller’s limits) and print
the earliest start times.
NOTE: The situation may change within seconds, if other users are submit-
ting jobs. Hence the printed start times may become invalid.

The following sub-options may be combined:

–group=GROUP If not using this sub-option, the CLI takes the default
group of the caller.

–raw prints in a raw format: No headline, no field formatting. Fields are
separated by ’ ’.

D.8.1 Resource Syntax

The syntax is like specifying resources at submit call using ccsalloc(1) but
without --res=rset.

Examples

• %C:ncpus=%1:mem=%2g

• The shortcuts -n and -c are allowed to iterate over nodes or cores.
Examples: -n %C;%C=1-10 or -c %C; %C=100-1000:100.
Note: The only iterator recognized here is %C.

D.8.2 Iterator Syntax

Name=<first>[-<last>[:stepping]]

All of them must be integers > 0. Default stepping is 1. Three types of
iterators are supported:

1. %C iterates the number of chunks.

• The default %C iterator is 1-1:1.

D.8. PREDICTING START TIMES 137

2. %D iterates the job duration.

• Last character is unit if not a number (See also ccs resource formats(7)).
E.g., %D=1-5h or %D=1-10:2m).

• The default unit is second.
E.g., %D=1-10:2 iterates: 1s, 3s, 5s, 7s, 9s.

• The default %D iterator is the default duration assigned to the
caller’s credentials (i.e., user and group). Refer to –def.

3. %R iterates the resources.

• Nine iterators are available: %1..%9.

• Default values are -1:-1:1.

• One may use %R iterators in any consumable resource (chunk or
job wide).

• An %R iterator may be used for multiple resources.
E.g., ncpus=%1:tesla=%1; %1=1-5

• %R iterators will be evaluated in each %C iteration, until the max-
imum of all %R iterators is reached.
E.g., %1=1-10; %2=1-5;

Remarks

1. Loop-Nesting is: %D, %C, %R.

2. %C and %D are not case sensitive.

3. Spaces are allowed in the resource and iterator specifications.

4. The order of iterator specifications does not matter.

5. Specifying an iterator which is not used is possible.

6. Multiple specifications of the same iterator is possible. Last match
wins.

7. OpenCCS will print only valid results. If an iteration cannot be
planned due to limitations or unavailable resources, it will be silently
skipped.

8. Syntax errors are printed.

138 APPENDIX D. CCSINFO MAN PAGE

D.8.3 Examples

• Predict 5-10 chunks with Tesla GPUs, 5 cores and 30GiByte RAM,
duration 1-2 hours.
ccsinfo -p ’%C:tesla=1:ncpus=5:mem=30g,place=scatter;%C=5-10;%D=1-2h’

• Predict 1-10 nodes (stepping 2) exclusively, duration 1-4 hours, group
benchmark.
ccsinfo -g benchmark -p ’-n %C; %C=1-10:2; %D=1-4h’

• Predict 100-500 cores (stepping 100), duration 1-5 days stepping 2.
ccsinfo -p ’-c %C; %C=100-500:100; %D=1-5:2d’

• Predict 1-16 cores with 4GB per core, duration 1 day, output in raw
format.
ccsinfo --raw -p ’ncpus=%1:mem=%2G; %1=1-16; %2=4-64:4; %D=1d’

• Predict 1-16 cores with 4GB mem and 8GiByte vmem per core, dura-
tion 1 day.
ccsinfo -p ’ncpus=%1:mem=%2G:vmem=%3g; %1=1-16; %2=4-64:4; %3=8-128:8; %D=1d’

• Predict 100-256 chunks with Matlab licenses, duration 75m.
ccsinfo -p ’%C:ncpus=16:mem=30g,mdce=%2; %C=100-256:64; %2=4-64:4; %D=75m’

D.9 EXIT STATUS

Upon successful processing, the exit status will be a value of zero.
If the command fails, the command exits with a value greater than zero.

D.10 ENVIRONMENT

If an option is not specified via a CLI switch, ccsinfo first looks for a
corresponding environment variable. If the environment variable is not
specified, the file $HOME/.ccsrc/uirc.ISLAND_NAME will be checked, where
ISLAND_NAME is derived from the environment variable CCS_UI_DEF_ISLAND.
If such a file does not exist, the file $HOME/.ccsrc/uirc is checked.

If no value has been found, a compile time default value will be taken.
An example file can be copied from $CCS/examples/uirc.
ccsinfo scans for the following (in alphabetic order) default values.

CCS UI ADMIN <ON|OFF> Activate admin mode.
Defaults to: OFF.

CCS UI DEBUG DEBUG LEVEL Related CLI switch --debug.
Defaults to: no debug mode.

D.11. FILES 139

CCS UI DEF GROUP NAME Related CLI switch --group.
Defaults to: not specified.

CCS UI DEF ISLAND NAME Related CLI switch -i.
Defaults to: not specified.

CCS UI DEF NODE FMT Related CLI switch ccsinfo -n --fmt.
Defaults to: not specified.

CCS UI DEF SCHED FMT Related CLI switch ccsinfo -s --fmt.
Defaults to: not specified.

CCS UI RC FILE FILE Specifies an alternative CLI rc file.
Defaults to: $HOME/.ccsrc/uirc. NOTE: Can only be specified in
the environment.

D.11 FILES

$HOME/.ccsrc/uirc[.ISLAND_NAME] specifies default values for the CCS
commands.

D.12 SEE ALSO

ccsalloc(1), ccsalter(1), ccsbind(1), ccskill(1), ccsmsg(1), ccssignal(1), cc-
stracejob(1), ccsworker(1), ccs resource formats(7), the CCS ’User Manual’.

D.13 AUTHORS

Paderborn Center for Parallel Computing
ccs-team@uni-paderborn.de

http://pc2.uni-paderborn.de

http://openccs.eu

140 APPENDIX D. CCSINFO MAN PAGE

Appendix E

ccskill Man Page

E.1 SYNOPSIS

ccskill [options] req identifier ...
ccskill [options] –all

E.2 DESCRIPTION

ccskill kills the given requests. Running jobs will be aborted. It deletes in
the order in which the request identifiers are presented to the command.

E.3 OPTIONS

–admin Enable admin mode, if caller is a registered CCS admin.

–all Concerns all owned requests, even if bound by another user interface.
This also valid for group managers and Administrators. The higher
privilege is ignored if using this option.

–debug=DEBUG LEVEL The DEBUG LEVEL argument is a string
which consists of either the word ”all”, or one or more of the characters
”c”, ”e”, ”i”, and ”m” .

all enable all debug messages,

c enable comm-layer debug messages,

e enable event-layer debug messages,

i enable internal debug messages,

m enable message-layer debug messages.

A default value can be set. Refer to section ENVIRONMENT.

141

142 APPENDIX E. CCSKILL MAN PAGE

-f Releases the given request(s), even if bound by another user interface.

-h, –help=[OPTION] Show help. OPTION is specified without hyphens
(’-’).
Format: String

-i, –island=NAME Specify the CCS island to be used. Must be the first
argument. A default value can be set. Refer to section ENVIRON-
MENT.
Format: String

-m, –message=MESSAGE If given MESSAGE will be sent to the owner
of the request. If it is a batch job, MESSAGE will be written to the
error file. If a tracefile is assigned to the request, MESSAGE will also
appear in that file.

-q, –quiet Be quiet. No logging messages will be printed.

–usage Show usage.

-V, –version Print version.

-v, –verbose=NUMBER The higher the value the verbose CCS will be.
Format: Unity

req identifier ... A req identifier is either a reqID, a request name, or a
subjob identifier. They can be mixed. For the syntax of a subjob
identifier refer to ccsalloc(1) or the CCS ’User Manual’.

E.4 EXIT STATUS

Upon successful processing, the exit status will be a value of zero.
If the command fails, the command exits with a value greater than zero.

E.5 ENVIRONMENT

If an option is not specified via a CLI switch, ccskill first looks for a
corresponding environment variable. If the environment variable is not
specified, the file $HOME/.ccsrc/uirc.ISLAND_NAME will be checked, where
ISLAND_NAME is derived from the environment variable CCS_UI_DEF_ISLAND.
If such a file does not exist, the file $HOME/.ccsrc/uirc is checked.

If no value has been found, a compile time default value will be taken.
An example file can be copied from $CCS/examples/uirc.
ccskill scans for the following (in alphabetic order) default values.

CCS UI ADMIN <ON|OFF> Activate admin mode.
Defaults to: OFF.

E.6. FILES 143

CCS UI DEBUG DEBUG LEVEL Related CLI switch --debug.
Defaults to: no debug mode.

CCS UI DEF ISLAND NAME Related CLI switch -i.
Defaults to: not specified.

CCS UI RC FILE FILE Specifies an alternative CLI rc file.
Defaults to: $HOME/.ccsrc/uirc. NOTE: Can only be specified in
the environment.

E.6 FILES

$HOME/.ccsrc/uirc[.ISLAND_NAME] specifies default values for the CCS
commands.

E.7 SEE ALSO

ccsalloc(1), ccsalter(1), ccsbind(1), ccsinfo(1), ccsmsg(1), ccssignal(1), ccsworker(1),
ccs resource formats(7), the CCS ’User Manual’.

E.8 AUTHORS

Paderborn Center for Parallel Computing
ccs-team@uni-paderborn.de

http://pc2.uni-paderborn.de

http://openccs.eu

144 APPENDIX E. CCSKILL MAN PAGE

Appendix F

ccsmsg Man Page

F.1 SYNOPSIS

ccsmsg [options] message req identifier ...

F.2 DESCRIPTION

Sending a message to a job means that CCS writes a message string into one
or more output files of the job. Typically, this is done to leave an informative
message in the output of the job. The syntax is: ccsmsg TARGET MESSAGE req_identifier[...]

F.3 OPTIONS

–admin Enable admin mode, if caller is a registered CCS admin.

–all Send message to all jobs.

–debug=DEBUG LEVEL The DEBUG LEVEL argument is a string
which consists of either the word ”all”, or one or more of the characters
”c”, ”e”, ”i”, and ”m” .

all enable all debug messages,

c enable comm-layer debug messages,

e enable event-layer debug messages,

i enable internal debug messages,

m enable message-layer debug messages.

A default value can be set. Refer to section ENVIRONMENT.

-e Write message to stderr (default).

145

146 APPENDIX F. CCSMSG MAN PAGE

-h, –help=[OPTION] Show help. OPTION is specified without hyphens
(’-’).
Format: String

-i, –island=NAME Specify the CCS island to be used. Must be the first
argument. A default value can be set. Refer to section ENVIRON-
MENT.
Format: String

-o Write message to stdout.

-q, –quiet Be quiet. No logging messages will be printed.

–usage Show usage.

-V, –version Print version.

-v, –verbose=NUMBER The higher the value the verbose CCS will be.
Format: Unity

MESSAGE Message to send. If the MESSAGE contains blanks, the string
must be quoted. If the final character of the string is not a newline, a
newline character will be added when written to the job’s file.

req identifier ... A req identifier is either a reqID, a request name, or a
subjob identifier. They can be mixed. For the syntax of a subjob
identifier refer to ccsalloc(1) or the CCS ’User Manual’.

F.4 EXIT STATUS

Upon successful processing, the exit status will be a value of zero.
If the command fails, the command exits with a value greater than zero.

F.5 ENVIRONMENT

If an option is not specified via a CLI switch, ccsmsg first looks for a
corresponding environment variable. If the environment variable is not
specified, the file $HOME/.ccsrc/uirc.ISLAND_NAME will be checked, where
ISLAND_NAME is derived from the environment variable CCS_UI_DEF_ISLAND.
If such a file does not exist, the file $HOME/.ccsrc/uirc is checked.

If no value has been found, a compile time default value will be taken.
An example file can be copied from $CCS/examples/uirc.
ccsmsg scans for the following (in alphabetic order) default values.

CCS UI ADMIN <ON|OFF> Activate admin mode.
Defaults to: OFF.

F.6. FILES 147

CCS UI DEBUG DEBUG LEVEL Related CLI switch --debug.
Defaults to: no debug mode.

CCS UI DEF ISLAND NAME Related CLI switch -i.
Defaults to: not specified.

CCS UI RC FILE FILE Specifies an alternative CLI rc file.
Defaults to: $HOME/.ccsrc/uirc. NOTE: Can only be specified in
the environment.

F.6 FILES

$HOME/.ccsrc/uirc[.ISLAND_NAME] specifies default values for the CCS
commands.

F.7 SEE ALSO

ccsalloc(1), ccsalter(1), ccsbind(1), ccsinfo(1), ccskill(1), ccssignal(1), cc-
stracejob(1), ccsworker(1), ccs resource formats(7), the CCS ’User Manual’.

F.8 AUTHOR

Paderborn Center for Parallel Computing
ccs-team@uni-paderborn.de

http://pc2.uni-paderborn.de

http://openccs.eu

148 APPENDIX F. CCSMSG MAN PAGE

Appendix G

ccssignal Man Page

G.1 SYNOPSIS

ccssignal [options] signal req identifier ...

G.2 DESCRIPTION

ccssignal is used to send a signal to a running job. The signal is sent to the
session leader of the job.

G.3 OPTIONS

–admin Enable admin mode, if caller is a registered CCS admin.

–all Send message to all jobs.

–debug=DEBUG LEVEL The DEBUG LEVEL argument is a string
which consists of either the word ”all”, or one or more of the characters
”c”, ”e”, ”i”, and ”m” .

all enable all debug messages,

c enable comm-layer debug messages,

e enable event-layer debug messages,

i enable internal debug messages,

m enable message-layer debug messages.

A default value can be set. Refer to section ENVIRONMENT.

-h, –help=[OPTION] Show help. OPTION is specified without hyphens
(’-’).
Format: String

149

150 APPENDIX G. CCSSIGNAL MAN PAGE

-i, –island=NAME Specify the CCS island to be used. Must be the first
argument. A default value can be set. Refer to section ENVIRON-
MENT.
Format: String

-q, –quiet Be quiet. No logging messages will be printed.

–usage Show usage.

-V, –version Print version.

-v, –verbose=NUMBER The higher the value the verbose CCS will be.
Format: Unity

signal Signal to send. Can be given as: [-]<digit> or [-][SIG]<signal>.

req identifier ... A req identifier is either a reqID, a request name, or a
subjob identifier. They can be mixed. For the syntax of a subjob
identifier refer to ccsalloc(1) or the CCS ’User Manual’.

G.4 EXIT STATUS

Upon successful processing, the exit status will be a value of zero.
If the command fails, the command exits with a value greater than zero.

G.5 ENVIRONMENT

If an option is not specified via a CLI switch, ccsbind first looks for a
corresponding environment variable. If the environment variable is not
specified, the file $HOME/.ccsrc/uirc.ISLAND_NAME will be checked, where
ISLAND_NAME is derived from the environment variable CCS_UI_DEF_ISLAND.
If such a file does not exist, the file $HOME/.ccsrc/uirc is checked.

If no value has been found, a compile time default value will be taken.
An example file can be copied from $CCS/examples/uirc.
ccsbind scans for the following (in alphabetic order) default values.

CCS UI ADMIN <ON|OFF> Activate admin mode.
Defaults to: OFF.

CCS UI DEBUG DEBUG LEVEL Related CLI switch --debug.
Defaults to: no debug mode.

CCS UI DEF ISLAND NAME Related CLI switch -i.
Defaults to: not specified.

CCS UI RC FILE FILE Specifies an alternative CLI rc file.
Defaults to: $HOME/.ccsrc/uirc. NOTE: Can only be specified in
the environment.

G.6. FILES 151

G.6 FILES

$HOME/.ccsrc/uirc[.ISLAND_NAME] specifies default values for the CCS
commands.

G.7 EXAMPLES

• ccssignal -9 123

• ccssignal 9 123

• ccssignal -KILL 123

• ccssignal SIGKILL 123

All examples above send the signal SIGKILL to the job 123

G.8 SEE ALSO

ccsalloc(1), ccsalter(1), ccsbind(1), ccsinfo(1), ccskill(1), ccsmsg(1), ccstrace-
job(1), ccsworker(1), ccs resource formats(7), the CCS ’User Manual’.

G.9 AUTHORS

Paderborn Center for Parallel Computing
ccs-team@uni-paderborn.de

http://pc2.uni-paderborn.de

http://openccs.eu

152 APPENDIX G. CCSSIGNAL MAN PAGE

Appendix H

ccstracejob Man Page

H.1 SYNOPSIS

ccstracejob [options] req identifier...

H.2 DESCRIPTION

ccstracejob prints (in chronological order) log and accounting data for the
given requests. The data is printed if the caller is the owner of the given
request(s), or a group manager of the related group(s), or member of the
OpenCCS admin group.

H.3 OPTIONS

-a, –noacc Do no print accounting data.

-f, –filter=FILTER Skip log messages of type (E)rror, (I)nformation, (L)og,
or (W)arning. FILTER is a string which consists of one or more of the
characters ’e’, ’i’, ’l’, and ’w’. Default is no filter.
Format: String

-h, –help=[OPTION] Show help. OPTION is specified without hyphens
(’-’).
Format: String

-l, –nolog Do no print log data.

-n days back Report information from up to days days in the past. Default
is 1.
Format: Unitary.

-q, –quiet Be quiet. No logging messages will be printed.

153

154 APPENDIX H. CCSTRACEJOB MAN PAGE

-r, –raw Print data in raw format.

–usage Show usage.

req identifier... req identifier may be a reqID or reqID[index].
ccstracejob accepts maximal 10 identifiers.

H.4 EXIT STATUS

Upon successful processing, the exit status will be a value of zero.
If the command fails, the command exits with a value greater than zero.

H.5 EXAMPLES

ccstrace -q -l -n 2 1234567 874563 874563[23]

H.6 SEE ALSO

ccsalloc(1), ccsalter(1), ccsbind(1), ccsinfo(1), ccskill(1), ccsmsg(1), ccssig-
nal(1), ccsworker(1), ccs resource formats(7), the CCS ’User Manual’.

H.7 AUTHORS

Paderborn Center for Parallel Computing
ccs-team@uni-paderborn.de

http://pc2.uni-paderborn.de

http://openccs.eu

Appendix I

ccsworker Man Page

I.1 SYNOPSIS

ccsworker [options] [[worker] [–] [worker args]] [[cmd] [cmd args]]

I.2 DESCRIPTION

CCS provides so called workers to start jobs under specific run time environ-
ments. They conceal system specific options and provide a convenient way
to start programs. If you start ccsalloc without any parameter, it will show
the currently available workers. ccsalloc –whelp=WORKER prints a
worker specific help (e.g. ccsalloc –whelp=mpich). You can call CCS
workers from within shell scripts by using this wrapper ccsworker.

I.3 OPTIONS

-h shows usage message

-v enables verbose mode

I.4 EXIT STATUS

ccsworker will normally return the exit code of the worker, which in turn
returns the exit code of the called command.
If ccsworker or the worker fails, the exit status will be a value greater than
zero.

I.5 EXAMPLES

#! /bin/sh

155

156 APPENDIX I. CCSWORKER MAN PAGE

cp foo bar

ccsworker mpich -nn 64 -- hello -nn 123

rm foo

ccsworker openmpi -nn 32 -- goodbye -o results

exit 0

I.6 SEE ALSO

ccsalloc(1), ccsalter(1), ccsbind(1), ccsinfo(1), ccskill(1), ccsmsg(1), ccssig-
nal(1), ccstracejob(1), ccs resource formats(7), the CCS ’User Manual’.

I.7 AUTHORS

Paderborn Center for Parallel Computing
ccs-team@uni-paderborn.de

http://pc2.uni-paderborn.de

http://openccs.eu

Appendix J

ccs resource formats Man
Page

J.1 DESCRIPTION

To specify resource and time dependent values, CCS provides the resource
formats Boolean, Cron, Datetime, Size, String, Timespan, and Unity. This
man page describes their syntax.

J.2 Boolean

A boolean value. Syntax:

• True ::= "t" |"y" |"1" |"yes" |"true"

• False ::= "f"|"n" |"0" |"no" |"false"

Values are not case sensitive.

J.3 Cron

Specifies a periodic time interval like in a cron job specification.
Syntax: A string of five space separated tokens (a b c d e)

• a is minute: 0-59

• b is hour: 0-23

• c is day of month: 1-31

• d is month: 1-12

• e is day of week: 0-6 (0 is Sun)

157

158 APPENDIX J. CCS RESOURCE FORMATS MAN PAGE

Each token may be:

• a wildcard given as asterisk ’*’, which always stands for ”first-last”

• a comma separated list of time points, e.g. ”2,3,5”

• an interval, e.g. ”3-4”

• a combination of lists and intervals, e.g. ”1,2,4-6”

Not allowed are:

• step values, e.g. ”/2”

• shortcuts like ”@weekly”

• weekday’s name, e.g. ”sun”

J.4 Datetime

• POSIX format
Syntax: [[[[CC]YY]MM]DD]hhmm[.SS]

– CC is the first two digits of the year (the century),

– YY is the second two digits of the year,

– MM is the two digits for the month,

– DD is the day of the month,

– hh is the hour,

– mm is the minute,

– SS seconds.

Example: 201712131443 denotes Dec 13 14:43 2017.

• CCS format
Syntax: <hh[:mm] | hh:mm:dd.mm[.yy]>

– hh hours from 00 to 23

– mm minutes from 00 to 59

– ss seconds from 00 to 59

– mm months from 01 to 12

– yy years from 00 to 99

Units are not case sensitive.
Example: 14 denotes 14:00 and 14:43:13.12.17 denotes Dec 13 14:43 2017.

J.5. SIZE 159

For all Datetime formats, the following is valid: If the month is not specified,
it will be set to the current month if the specified day is in the future.
Otherwise, the month will be set to next month. If the day is not specified,
it will be set to today if the time is in the future. Otherwise, the day will
be set to tomorrow. For example: specifying at 11:15am a time of 11:10,
will be evaluated as 11:10am tomorrow.

J.5 Size

Specifies a size (memory, disk,) or a count
Syntax: <number[multiplier]>

• Kilo: k is 210 and K is 103

• Mega: m is 220 and M is 106

• Giga: g is 230 and G is 109

• Terra: t is 240 and T is 1012

Example: 1000K denotes 1000*1000 and 1000k denotes 1024*1024. Default
multiplier is 1.

J.6 String

A series of alpha-numeric characters without whitespace(s), beginning with
an alphabetic character.

J.7 String Array

A comma separated list of Strings. The character ’,’ is not allowed within
a String. A resource of type ’string array’ is non-consumable. A resource
request will succeed if request matches one of the values. A resource request
can contain only one string. A string array resource with one value works
exactly like a string resource.

J.8 Timespan

• [[hours:]minutes:]seconds

Example: 120:12:13 denotes 120 hours, 12 minutes, and 13 seconds.

• [*w][*d[*h[*m]]]]*s

Supported units are:

– w (week) equals to 7 days

160 APPENDIX J. CCS RESOURCE FORMATS MAN PAGE

– d (day) equals to 24 hours

– h (hour) equals to 60 minutes

– m (minute) equals to 60 seconds

– s (second)

Default unit ist second. The unit order is irrelevant. Example: 14d1h12m3s3w
denotes 3 weeks, 14 days, 1 hour, 12 minutes, and 3 seconds.

J.9 Unitary

Specifies the maximum amount of a resource which is expressed as a simple
integer.

J.10 SEE ALSO

ccsalloc(1), ccsalter(1), ccsbind(1), ccsinfo(1), ccskill(1), ccsmsg(1), ccssig-
nal(1), ccstracejob(1), ccsworker(1), the CCS ’User Manual’.

J.11 AUTHORS

Paderborn Center for Parallel Computing
ccs-team@uni-paderborn.de

http://www.uni-paderborn.de/pc2

http://www.openccs.eu

Appendix K

Node States

The following node states (listed in alphabetically order) are used in Open-
CCS:

Down This state is set automatically by OpenCCS if the node is failing
to report, is detecting local failures with node configuration or
resources, or it has been shutdown by the administrator.

Job Exclusive
The whole node is assigned to a single job. This may be be-
cause the job requested the node exclusively or the node has
the attribute Space Shared.

Offline The node has been instructed by an administrator to no longer
accept work. Running jobs are not affected. This may be due to
a defect or maintenance. Often administrators add a comment
why the node is offline.

Online The node accepts work.

Sick Node is not up and online. This is a “meta” state, often used
as a filter.

Unknown The node has been specified by the administrator but has not
yet been connected to OpenCCS.

Up The node is up and running and the NSM is also up and running
and is connected to the MM.

161

162 APPENDIX K. NODE STATES

Appendix L

Node Properties

The following built-in node properties are used in OpenCCS:

Access Control List (ACL)
The administrator may specify a list of consumers which may
request the node. This is useful to “reserve” nodes for specific
accounts and/or groups. Additionally, a maximum duration
may be specified to allow jobs which do not match the ACL.
The ACL overrules the maximum duration limit, i.e., if the
caller is member of the ACL, OpenCCS does not check the jobs
maximum duration against the node specific maximum dura-
tion. Note: All other restrictions (e.g., minimum resources) are
still checked.
Users may inspect the node spcific ACL by:
ccsinfo -n --sta=ok --fmt=%H%p --raw | grep -i acl

or by ccsinfo -n <NODENAME>.

LocalOnly If set to true only jobs which run completely on this node are
mapped to this node. This attribute is also set if this node is
part of the dynamic partitioning policy (Appendix:M:SMJ).

Minimum Resources
The administrator may specify a set of resource amounts and/or
a maximum duration which have to be requested at least by a
job to be mapped on that node. Example:
vmem=512g or mem=256g or ncpus=17 or duration <= 2h

This means a chunk is mapped to this node if it requires either
at least 512GiByte virtual memory, 256GiByte RAM, or 17
cores, or it runs at most 2 hours.

ncpus Freepool
The administrator may specify a node specific free pool. This
is mostly used on nodes hosting accelerator cards like a GPU.
Using the GPU in offload mode often also needs at least one

163

164 APPENDIX L. NODE PROPERTIES

core on the host. To avoid that a job which does not need the
GPU will block all cores on the host, the adminstrator may
specify how many cores are kept free for jobs which request a
GPU.

Space Shared
The node will be always assigned exclusively to a job. The state
is set by the administrator.

Additionally all non consumable resouces set by the local administriation
are part of the properties.

One may inspect the node properties by using ccsinfo -n --state=%H%p%m

or ccsinfo -n. Refer to section 8.2.1 for more details.

Appendix M

Glossary

This glossary defines OpenCCS specific items.

Advance Reservation
A reservation for a set of resources for a specified time. The
reservation is only available to the specified users and groups.

AM The Access Manager (AM) manages the user interfaces and is
responsible for authentication, authorization, and accounting.

Boot Node At allocating a partition one of the nodes becomes the boot
node. This node controls the jobs started by the user (e.g.
starts the job, holds the connection to the UI). The boot node
is the first node in the environment variable CCS NODES and
in all mapping infos. OpenCCS assigns the boot node to one
of the nodes which satisfy the last specified chunk. Example:
--res=rset=ncpus=240:phi=1:arch=MIC+4:ncpus=8:mem=32g.
The boot node will be one of (4:ncpus=8:mem=32g)

Chunk Specifies a set of resources that have to be allocated as a unit
on one node. Chunks cannot be split across nodes.

CLI Command Line Interface

Client A OpenCCS module connected to the IM.

CoreModule AM, EM, IM, MM, NSM, OS, PM.

Daemon An operating system process, which may be single- or multi-
threaded. Runs in the background.

Host A host is any computer. It may consist of at least one node.

Execution Host
See Boot Node.

165

166 APPENDIX M. GLOSSARY

IM The Island Manager (IM) provides name services and watchdog
facilities to keep the island in a stable condition.

Job A command running on an allocated partition. A job is a col-
lection of related processes which is managed as a whole. A job
can often be thought of as a shell script running in a POSIX
session. A non-singleton job consists of multiple tasks of which
each is a POSIX session. One task will run the job shell script.

Job Array A container for a collection of similar jobs submitted under a
single reqID. It can be submitted, queried, modified, or dis-
played as a unit.

MM The Machine Manager (MM) provides an interface to machine
specific features like node management or job controlling.

Module Logical entity like the Machine-Manager. It may comprise more
than one daemon.

N/A Means “Not available”. Used if a value is not specified or not
accessible.

Node A node has at least 1 Processing Element (PE) (e.g., CPU,
core, GPU, ...) and may have have an operating system.

OS The Operator Shell (OS) is the main interface for system ad-
ministrators to control a OpenCCS island, e.g. by connecting
to the core modules.

PM The Planning Manager (PM) schedules the user requests onto
the machine.

Request A reservation, a job array, or a job.

reqID or request-ID
After accepting a submitted request OpenCCS assigns a unique
numerical identifier to the request. The so called request-ID or
reqID.

Req identifier
Identifies a submitted request. May be a reqID, a subjob iden-
tifier, or a request name.

SMJ Small Job. The adminstrator may specify dynamic partitioning
of the system, to enforce mapping of “small jobs” to specific
nodes. A “small job” is defined by the administrator. The
system automatically adapts the number of used nodes by the
ratio of requested ncpus for small and large nodes. Once can

167

inspect the job attribute using ccsinfo --fmt=%a. Refer to
section 8.1.4 for more details.

Standing Reservation
An advance reservation, which recurs at specified times. For ex-
ample, the user can reserve 8 CPUs and 10GB every Wednesday
and Thursday from 5pm to 8pm, for the next three months.

Subjob Identifier (SJID)
Identifies one or more subjobs. Syntax: reqID[ID] where
regID is the requestID of the job array and ID may com-
prise comma separated job array ranges. E.g., 1234[5] or
1234[1-8:2,26]. The syntax is explained in 11.3

Symbol OpenCCS uses special files to specify runtime information like
filenames, timeouts, or limits. Symbols are evaluated by all
OpenCCS scripts and executables.

Task One or more session(s) belonging to a job, running on one of
the nodes assigned to the job.

UI The User Interface (UI) provides a single access point to one
or more systems.

WLM Workload Management System

Worker OpenCCS provides so called workers to start jobs under specific
run time environments (e.g. MPICH, Gaussian, etc.). They
conceal system specific options and provide a convenient way
to start programs.

168 APPENDIX M. GLOSSARY

List of Figures

2.1 The OpenCCS modules (left) and event type handling (right) 16

169

170 LIST OF FIGURES

List of Tables

4.1 OpenCCS CLI User Commands 35

5.1 Always available resources. 47
5.2 Placement Specification . 48

6.1 Correlations of the different scheduling hints 60

9.1 Which job attribute can be when altered. 84

171

Index

–admin, 32
/dev/null, 36, 63
/etc/profile.d, 37
%A, 62
%a, 62
%reqid, 62, 63
%x, 62, 63

ALLOCATED, 17, 33
ALLOCATING, 17, 33
AM, 15

batch job, 32

CCS, 39
ccs, 17
ccs , 17
CCS ARCH, 40
CCS ARRAY ID, 40
CCS ARRAY INDEX, 40
CCS ISLAND, 40
CCS MAPPING, 40
CCS NODEFILE, 40
CCS NODES, 40, 165
CCS REQID, 40
CCS REQNAME, 40
CCS TMPDIR, 40
CCS UI ADMIN, 36
CCS UI BG OUTPUT, 36
CCS UI DEBUG , 36
CCS UI DEF DURATION , 36
CCS UI DEF EMAIL -

RECIPIENTS,
36

CCS UI DEF GROUP, 36
CCS UI DEF ISLAND, 36
CCS UI DEF NODE FMT, 36

CCS UI DEF NOTIFY JOB, 36
CCS UI DEF NOTIFY USER, 36
CCS UI DEF SCHED FMT, 37
CCS UI NOHUP, 37
CCS UI RC FILE, 37
CCS UI REQ NAME, 37
CCS UI WORKER FILE, 37
CCS UMASK, 40
ccs x, 17
ccsalloc, 55–58, 62, 63, 83, 86–88,

90, 91, 94, 95
ccsalter, 18, 32, 34, 83, 85, 93
ccsbind, 32, 58, 86
ccsgenrcfiles, 37
ccsinfo, 26, 32, 39, 47, 69, 92
ccskill, 32, 91, 94
ccsmsg, 32, 86
ccssignal, 32, 85
ccstracejob, 17, 20, 32, 34, 81
ccsworker, 55
ccsx, 17
chunk, 47
CLI, 34
credit, 20, 53

down, 161

EM, 16, 58
exclusive, 161

FOO, 13

group, 19

Hold, 85

IM, 16
ISLAND AAL FILE, 20

172

INDEX 173

last, 90

MM, 16
my preproc , 55

NCPUS, 40
NSM, 16

offline, 161
OMP NUM THREADS, 40
online, 161
OS, 16

PLANNED, 17, 33
PLANNING, 17, 33
PM, 15
Privilege, 80
profile.d, 37

reqID, 33
Resume, 85
rsvid, 87

sick, 161
SJID, 90
STOPPED, 17, 34
STOPPING, 17, 33

TMPDIR, 40

UI, 15
uirc, 35
unknown, 161
up, 161

WAITING, 17, 34
WLM, 15
Worker, 22

	About this Document
	State and Completeness
	Audience and Purpose
	Document Organization
	Related Documents
	Typographic Conventions

	What is OpenCCS
	Overview
	Architecture
	Command Naming Schema
	Request States

	Features
	Planning Based
	Authentication
	Authorization
	User Roles
	Job Trace
	Reliability and Fault Tolerance
	Customizing

	Differences
	Validity
	Limits
	FreePools

	New Features
	New Features in OpenCCS 0.9.8-5
	New Features in OpenCCS 0.9.8-4
	New Features in OpenCCS 0.9.8-3
	New Features in OpenCCS 0.9.8-2
	New Features in OpenCCS 0.9.8-1
	New Features in OpenCCS 0.9.8
	New Features in OpenCCS 0.9.7-5
	New Features in OpenCCS 0.9.7-4
	New Features in OpenCCS 0.9.7
	New Features in OpenCCS 0.9.6

	Getting Started with OpenCCS
	User Roles
	User-Role
	Manager-Role
	Administrator-Role

	Principle Usage
	Request Types and Identifier
	Request States
	OpenCCS Comand Line Interfaces
	CLI Argument Parsing
	CLI Default Values

	Setup the OpenCCS Environment
	Message of the Day
	Job Priorities
	Job Environment
	Boot Node Environment Variables
	The OpenCCS Node File

	Resources
	Resource Categories
	Resource Formats
	Built-In Resources
	Specifying Resources
	Syntax
	Resource Set / Chunk Specification
	Placement Specification
	Job-Wide Resources
	Specifying Resource Values
	Examples

	Resource Assignment to Jobs
	Default and Force Resources
	Matching Unset Resources

	Resources and Limits
	Limit Enforcement
	Limits on Exclusively Used Nodes
	Resource Credits

	Submitting Jobs
	Introduction
	Script Jobs
	Submitting a Job Script
	Changing the Job's CCS Directive
	Passing Arguments to Job Scripts
	Jobs Without a Job Script

	Interactive Jobs
	The Virtual Terminal

	Background Jobs
	Job Submission Options
	Time Related Attributes
	Request Name
	Email Notification
	Email Recipients
	Job Notification
	Input, Output and Error Files
	Job Trace File

	Predicting Job Start Times
	Resource Syntax
	Iterator Syntax
	Examples

	Checking Job and System Status
	Schedule Status
	Summary
	Job Distribution
	Filtering the Data
	Formatting the Output
	Examples

	System Status
	Node Status
	Available Workers
	Allocatable Resources
	FreePools

	Group / User Related Infos
	Group Membership
	Limits and Privileges
	Default and Force Values
	Used Resources

	Request Status

	Working with OpenCCS Jobs
	Altering Scheduled Requests
	Holding / Resuming Jobs
	Sending Signals to Jobs
	Sending Messages to Jobs
	Deleting Requests

	Reservations
	Submitting a Reservation
	Using a Reservation
	Altering a Reservation
	Deleting a Reservation

	Job Arrays
	Introduction
	Glossary
	Identifier Syntax
	Examples

	Environment Variables set by OpenCCS
	Limits
	Submission
	File Naming
	Tracefiles
	Exit Status
	Checking Status
	Altering
	Holding/ Resuming
	Killing
	Signalling
	Sending Messages
	User Notification
	Job Arrays in Reservations

	ccsalloc Man Page
	SYNOPSIS
	DESCRIPTION
	Script Jobs
	Jobs Without a Job Script
	Simple Jobs
	Interactive Jobs
	Reservations
	Job Arrays
	Specifying Resources

	OPTIONS
	KEYWORDS USABLE AT REDIRECTION
	THE VIRTUAL TERMINAL
	EXIT STATUS
	ENVIRONMENT
	Job Environment
	The Node File
	Execution Host Environment Variables

	FILES
	EXAMPLES
	SEE ALSO
	AUTHORS

	ccsalter Man Page
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	KEYWORDS USABLE AT REDIRECTION
	WHAT CAN BE WHEN ALTERED
	EXIT STATUS
	ENVIRONMENT
	FILES
	SEE ALSO
	AUTHORS

	ccsbind Man Page
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	ENVIRONMENT
	FILES
	SEE ALSO
	AUTHORS

	ccsinfo Man Page
	SYNOPSIS
	DESCRIPTION
	GENERAL OPTIONS
	SCHEDULE STATUS
	SYSTEM STATUS
	Node Status
	Available Workers
	Allocatable Resources
	FreePools

	GROUPS / USERS
	Group Membership
	Limits and Privileges
	Default Values
	Used Resources

	REQUEST STATUS
	PREDICTING START TIMES
	Resource Syntax
	Iterator Syntax
	Examples

	EXIT STATUS
	ENVIRONMENT
	FILES
	SEE ALSO
	AUTHORS

	ccskill Man Page
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	ENVIRONMENT
	FILES
	SEE ALSO
	AUTHORS

	ccsmsg Man Page
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	ENVIRONMENT
	FILES
	SEE ALSO
	AUTHOR

	ccssignal Man Page
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	ENVIRONMENT
	FILES
	EXAMPLES
	SEE ALSO
	AUTHORS

	ccstracejob Man Page
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	EXAMPLES
	SEE ALSO
	AUTHORS

	ccsworker Man Page
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	EXAMPLES
	SEE ALSO
	AUTHORS

	ccs_resource_formats Man Page
	DESCRIPTION
	Boolean
	Cron
	Datetime
	Size
	String
	String Array
	Timespan
	Unitary
	SEE ALSO
	AUTHORS

	Node States
	Node Properties
	Glossary

