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We present an experimental comparison of seven state-of-the-art machine learning algorithms for the task of
semantic analysis of spoken input, with a special emphasis on applications for dysarthric speech. Dysarthria is a
motor speech disorder, which is characterized by poor articulation of phonemes. In order to cater for these non-
canonical phoneme realizations, we employed an unsupervised learning approach to estimate the acoustic
models for speech recognition, which does not require a literal transcription of the training data. Even for the

subsequent task of semantic analysis, only weak supervision is employed, whereby the training utterance is
accompanied by a semantic label only, rather than a literal transcription. Results on two databases, one of them
containing dysarthric speech, are presented showing that Markov logic networks and conditional random fields
substantially outperform other machine learning approaches. Markov logic networks have proved to be espe-
cially robust to recognition errors, which are caused by imprecise articulation in dysarthric speech.

1. Introduction

Semantic analysis is the task of learning the mapping of spoken
language to a semantic representation, and thus discovering the
meaning of an utterance. Designing a meaning representation to express
the spoken language is not a trivial task. Early approaches used first-
order or higher-order logic to represent meanings (Mori et al., 2008;
Montague, 1970). One of the approaches that is widely used in natural
language processing (NLP) is based on semantic frames. Semantic
frames are composed of slots, which represent specific attributes of the
spoken utterance. The task here is three-fold: i) Target word detection
finds semantically relevant words in an utterance (Coppola et al.,
2009); ii) frame classification determines the frame that corresponds to
an action or a domain of interest; iii) slot filling finds the slot-values
that correspond to frame attributes of the input utterance
(Wang, 2010). A more recent trend is the use of distributional seman-
tics, where meanings of the words are determined based on the context
in which they occur. In this way word meaning can be extracted from
text (or speech) corpora on a large scale. Contexts are represented using
vectors of frequencies of other words co-occurring with a word being
modelled (Lenci, 2008). To represent the meaning of entire utterances a
compositional model is used which composes the vectors for the words
contained in an utterance to create a vector representation of the ut-
terance (Bellegarda and Monz, 2016; Kartsaklis, 2014). This approach,
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however, hinges on the availability of large training corpora, which are
usually not available for applications with dysarthric speech. We
therefore decided to use the semantic frame representation of the
meanings in our work since it is more appropriate for a domain specific
task with limited available training data.

While semantic analysis in NLP assumes the processing of typed
input (written language), we are interested in determining the meaning
of spoken language here. This poses additional challenges, since we also
have to deal with noise and the inaccuracies of automatic speech re-
cognition (ASR). A straightforward way to solve this problem is to use a
word-based ASR system that transforms spoken input into word se-
quences, and then apply the techniques already developed for proces-
sing written language. However, spoken language often does not follow
the grammar and the syntactic structure of the written language, and is
rather spontaneous, involving self-corrections, repetitions, and other
irregularities. Moreover, ASR is error-prone and it outputs word se-
quences with no structure information (e.g. interpunction). Therefore it
is necessary to adapt the natural language semantic analyser to cope
with the problems of spoken language (Despotovic et al., 2015). An
excellent survey of techniques for integrating ASR and spoken language
understanding can be found in (Mori et al., 2008).

We are especially interested in building a semantic analyser that can
be used with dysarthric speech, which is poorly articulated and often
hardly intelligible. Dysarthria is a motor speech disorder caused by
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problems controlling the muscles used in speech production. It is
characterized by uneven speech rhythm and volume, slow, weak or
slurred speech that is difficult to understand for listeners unfamiliar
with the particular speech disorder (Christensen et al., 2013). Common
causes of dysarthria include neurological disorders such as stroke, brain
trauma, brain tumors, amyotrophic lateral sclerosis, cerebral palsy,
multiple sclerosis, Parkinson’s disease, surgery or weakness of the
tongue. It is often accompanied by severe physical impairments that
make standard access to other devices (e.g. keyboard, mouse,
touchscreen, adaptive pointing device) used in computer based assistive
technology inefficient. ASR can, therefore, help individuals with dys-
arthria to interact with their environment. Unfortunately, due to the
variability of their articulatory output, the use of standard speaker-in-
dependent ASR systems is not possible (Mengistu and Rudzicz, 2011).
Furthermore, word boundaries in dysarthric speech are less apparent
than in normal speech, which prohibits automatic recognition of the
string of words. The experience is similar to listening to someone
speaking a foreign language (Lansford et al., 2011). Hence, we propose
an approach where we bypass word segmentation and try to learn a
semantic analyser directly from the recognized subword unit sequence.
Furthermore, to accommodate for the deviation of dysarthric speech
from standard pronunciation, the sub-word unit representations are
automatically learned from the speech input. This avoids the need for a
custom pronunciation lexicon for each speaker uttering dysarthric
speech. The subword units are discovered as acoustic segments that
have been consistently observed in training data. These units we obtain
in an unsupervised way, in the absence of the labelled training data or a
pronunciation lexicon (Walter et al., 2013), which is very important, as
it is inherently difficult to obtain labelled training data for speakers
with dysarthria. Hence, unsupervised methods might be of particular
interest. Also, this potentially allows for an unlimited vocabulary. In
that sense, our task is similar to Gaspers and Cimiano (2014) where a
semantic parser is learned from a sequence of phonemes at the output of
the phoneme recognizer, which are subsequently segmented into (sub)
word-like units.

Our aim in this paper is to give a comprehensive comparative
analysis of different machine learning approaches for the task of se-
mantic analysis of dysarthric speech, although we present the results for
normal speaking users as well. We use multinomial naive Bayes (MNB),
support vector machines (SVM), maximum entropy (MaxEnt), linear
discriminant analysis (LDA), non-negative matrix factorization (NMF),
conditional random fields (CRF) and Markov logic networks (MLN).
Naive Bayes is commonly used in text classification due to its simplicity
and low complexity (Kilimci and Ganiz, 2015). There are known ap-
plications in spoken language understanding (SLU), e.g. for a task
classification in the context of a public transport information dialog
system in Chinese language (Weilin et al., 2003). Tur and De Mori
compare the performance of naive Bayes and SVM and show that SVM
remains robust even when the dimensionality of the problem increases,
while naive Bayes is preferred where statistical estimation does not
suffer from the curse of dimensionality (Tur and De Mori, 2011). Deoras
et al. propose a joint decoding of words and semantic tags for SLU
where the optimal word and the semantic slot sequence are predicted
jointly given the input acoustic stream, instead of employing a cascade
approach, where the output of ASR is fed into the semantic analyser.
These statistical models are trained individually for both steps. For the
joint decoding task MaxEnt and CRF models have similar performance,
while CRF slightly outperforms MaxEnt for the cascade approach
(Deoras et al., 2013). Wang and Acero show that linear-chain condi-
tional random fields (CRF) perform best among several discriminative
models when converting the SLU problem into a sequential labelling
task (Wang and Acero, 2006). A major disadvantage of these dis-
criminative models is the necessity of labelling the training utterances
with semantic representations at the word-level (Mairesse et al., 2009).
Wutiwiwatchai and Furui compare the results on confidence scoring for
a spoken dialogue system for Thai language using the Fisher LDA and
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SVMs with linear, polynomial and radial basis function kernels, con-
cluding that all three SVMs outperform LDA for a given task
(Wutiwiwatchai and Furui, 2003). Ons, Gemmeke and Van hamme
propose an NMF-based vocal-user interface used in a home automation
system for speakers with dysarthria to find recurrent acoustic and se-
mantic patterns corresponding to spoken commands (Ons et al., 2014).
Kennington and Schlangen use MLNs for situated incremental natural
language understanding from the noisy input, coming from the output
of the ASR (Kennington and Schlangen, 2014). Khot et al. use MLNs for
automatic question answering in standardized science exams
(Khot et al., 2015). Despotovic, Walter and Haeb-Umbach apply MLNs
to the semantic analysis of spoken input and gain significantly better
results compared to NMF, SVM and MNB based approaches for both
normal speaking and dysarthric users (Despotovic et al., 2015).

The current paper presents an extension of our work in
Despotovic et al. (2015): We employ more machine learning algorithms
in our comparison, and we present the experimental results in more
detail. Furthermore, the tested machine learning approaches are de-
scribed in more detail. All the experiments were performed in two
domains, a home automation task for speech impaired people (DOM-
OTICA 3) and a vocally guided card game named patience (PATCOR),
containing speech of normal-speaking persons (Gemmeke et al., 2013).
For both domains subjects were giving commands during the training
phase freely, not restricted to any particular words or grammatical
constructs. For the mapping task only a weak supervision was required,
since only the actions were annotated using semantic frames, not the
exact words that were used to express the command. Since we are
particularly interested in dysarthric speech, which is often character-
ized by non-canonical phoneme realizations, we employ models of
acoustic units that are learned speaker-dependently in an unsupervised
fashion rather than using a speaker-independent phoneme recognizer.

The remainder of the paper is organized as follows. Section 2 pre-
sents details of acoustic pre-processing. Section 3 gives a brief overview
of machine learning algorithms tested in this paper. The speech corpora
and evaluation procedure are presented in Section 4. Results and dis-
cussion are described in Section 5, followed by concluding remarks in
Section 6.

2. Acoustic preprocessing

Acoustic pre-processing is the task of partitioning an input stream of
speech and deriving a set of parameters to represent speech in a form
which is suitable for subsequent processing (Singh et al., 2012). An
adequate acoustic representation is especially important for dysarthric
speech, where the speech rate is reduced, vowels may be distorted and
word boundaries are less apparent. Moreover, an increase in phoneme
transition duration and in syllable and word duration is observed
(Duffy, 2012). Details of acoustic representation and feature extraction
are given in this section.

2.1. Acoustic representation

In order to learn the mappings to semantic representations directly
from the raw speech, we employ an intermediate acoustic representa-
tion of the spoken input in terms of acoustic unit descriptors (AUD),
which are subword units learned in an unsupervised way, without the
transcriptions of the training data or a pronunciation lexicon
(Despotovic et al., 2015). AUDs are determined using a three-step ap-
proach: segmentation of the input speech into variable-length chunks of
typically a few tens of milliseconds length; clustering the similar seg-
ments and assigning labels to clusters (AUDs); and iterative HMM
training of obtained AUDs.

Before the segmentation is carried out the Mel Frequency Cepstral
Coefficient (MFCC) feature vectors are extracted from the raw speech,
and the log energy and the first and second-order derivatives are ap-
pended to arrive at a 39-dimensional feature vector. Per utterance
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cepstral mean and variance normalization is carried out.

The segmentation of the input speech into chunks is realized using a
cosine distance as a local distance measure. A segment boundary is
introduced if the value of the local distance measure between the mean
representative of the current segment and the next feature vector is
greater than a threshold. To prevent creating too short segments, the
segments are constrained to the minimum length.

In the second step similar segments are clustered according to
acoustic consistency using the unsupervised graph clustering algorithm
by Newman and Girvan (2004). A label is assigned to each cluster to
obtain an initial transcription of the spoken input in terms of sequences
of cluster labels. These cluster labels will be denoted in further text as
acoustic unit descriptors (AUDs).

The final step includes the iterative training of hidden Markov
models (HMMs) for the discovered AUDs. Each AUD is modeled by a 3-
state left-to-right hidden Markov model (HMM) with Gaussian mixture
output densities. A zerogram language model is used to connect the
AUDs.

It has been shown in Walter et al. (2014) that AUDs are able to
capture acoustically consistent phenomena and represent recurring
patterns of feature vectors, and furthermore that they are competitive
to other unsupervised acoustic learning techniques. For more details
about the learning of the acoustic representation the reader is referred
to Walter et al. (2013).

2.2. Feature set

After obtaining an acoustic representation of the spoken utterance
in terms of AUD sequences, we need to map it to a vector of fixed di-
mension, to be applicable to the machine learning methods used in this
paper. The length of this vector is equal to the total number of different
AUDs obtained for each particular speaker and it is created by setting
each vector element to the occurrence frequency of the corresponding
AUD. Binary features indicating only the presence of an AUD, dis-
regarding its count, can also be used since early experiments have
shown only a minor improvement due to including counts of AUDs.
Moreover, the AUD feature set is augmented with AUD bigram counts.
Higher n-grams were not included since they did not improve the
classification performance and caused drastic increase in feature vector
size.

This is basically a bag-of-n-grams approach, which ignores the re-
lative position of the token (AUD unigram or bigram) in the utterance.
Despite its simplicity, classification methods that use bag-of-n-grams or
bag-of-words features often achieve high performance using state-of-
the-art learning methods (Boulis and Ostendorf, 2005). Although more
advanced features might lead to better classification performance, op-
timizing the feature extraction is beyond the scope of this paper. Our
aim is to give a fair comparison of different machine learning ap-
proaches under the same or at least similar conditions.

3. Machine learning techniques for semantic analysis

In this section we give a brief outline for each of the machine
learning algorithms used in this paper, with details of the particular
implementation. While the well-known techniques such as e.g. MNB,
SVM or LDA are given in less details, some task specific aspects of NMF
and MLN are discussed more extensively.

3.1. Multinomial naive Bayes

Multinomial naive Bayes is a special case of a naive Bayes classifier
that is widely used in text classification. Whereas simple naive Bayes
represents a data instance (spoken utterance) as the presence or absence
of tokens (AUDs in our case), in MNB the data instance is represented
by the number of token occurrences. The method is known from sta-
tistical language modeling for speech recognition as a unigram
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language model (McCallum and Nigam, 1998).

In semantic analysis the goal of the classifier is to find the best
meaning representation for the spoken utterance represented by its
attribute values. MNB assumes that the attribute values (AUDs) are
independent of each other given the class (Manning et al., 2008). While
the class-conditional independence assumption between predictors is
obviously not true, it greatly simplifies the training process and often
works very well in practice.

In a prediction step, the method computes the posterior probability
of the unseen test data belonging to each class, and then assigns the
observation to the class with the largest posterior probability.

3.2. Support vector machines

Support vector machines attempt to do a binary classification by
finding a decision boundary that is maximally far away from any data
point between a linearly separable set of data. The decision boundary is
the hyperplane defined as the linear decision function with maximal
margin between data points belonging to different classes (Cortes and
Vapnik, 1995). The support vectors represent a small subset of data
points that lie on this margin; therefore they fully define the position of
the hyperplane.

If the dataset is not linearly separable, we can map training vectors
d; into a higher dimensional space using the transform @(d;), where the
separation might be easier. We introduce the kernel function related to
the transform @(d;) with the relation k(d;, d;) = ¢(d;))¢(d;). Hence, the
decision boundary may be nonlinear in the original input space, but be
a hyperplane in the transformed high-dimensional feature space. Some
common kernel functions are linear, polynomial, radial basis function,
sigmoid etc.

In case there are more than two classes, multiclass classification is
implemented using one-against-one approach, where one SVM is con-
structed for each pair of classes (Milgram et al., 2006). Thus, c(c — 1)/2
classifiers are constructed for ¢ classes. Classification is performed ac-
cording to the maximum voting criterion; the unknown entry is as-
signed to the class with the highest number of votes. We used the
LIBSVM library for SVM implementation' with a linear kernel
(Chang and Lin, 2011).

3.3. Maximum entropy

The maximum entropy method searches for a conditional prob-
ability distribution of the class label c given a data instance (utterance)
d that is as uniform as possible under given constraints. Without any
constraints the probability distribution would simply be uniform. Each
constraint will move the distribution further away from being uniform,
but closer to the data. Constraints on the conditional distribution are set
from the training dataset using features. Let us define a feature fi(d, c) as
a real-valued function of the training data instance d and the class label
c. Similar as in MNB we can use token (AUD or AUD bigram) counts as
features, where f; is a function that equals zero if the token t does not
appear in the utterance d and equal to the number of token occurrences
N(d, t) otherwise:

N(@,¢), if ted

0, otherwise

fi(d, o) = {
€))

In general, it is expected that in text classification problems features
accounting for token occurrences are more beneficial compared to
simple binary features (Nigam et al., 1999). The conditional distribu-
tion that an input data instance d belongs to a class c¢ is defined as
(Berger et al., 1996)

1 Available from http://www.csie.ntu.edu.tw/~cjlin/libsvm .
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1 n
P(cld) = 7@ exp[ ; w;f; (d, c)] -
where w; i is a weight to be estimated and
Z(@d) =), exp(E wif(d, c)]
c i=1 (3)

is the normalizing term. Given this model, we wish to choose w; that
maximizes the conditional distribution of the data. The limited-memory
quasi-Newton optimization algorithm (L-BFGS) was used to determine
the optimal weights. In our work we used the MaxEnt
plementationzgiven in Weinman et al. (2011).

im-

3.4. Linear discriminant analysis

Linear discriminant analysis is based upon the concept of searching
for a linear combination of predictors that best separates between
classes. Let us assume a set of training data instances d € R" and class
labels ¢ € {cy, ¢, ...,cx}. Suppose we model each class conditional den-
sity as multivariate Gaussian, where each class c; has its own mean g,
but shares a common covariance matrix X. The means and the covar-
iance matrix are estimated from the training data (Porter and
Narsky, 2013).

To predict the classes of unseen test data instances the trained
classifier finds the class by solving y = argmax,(P(c;|d)), where P(c;|d)
is the posterior probability that a data instance d belongs to a class c;.
Applying the Bayes rule we get § = argmax;((P(c;)P(d|c;)), where P(c;)
is the prior probability of class c; and we assume that P(d|c;) follows a
multivariate Gaussian distribution. The decision boundary between
classes c; and ¢; is defined with

§(d) = d"E 7 (w; — ) +c=0 4)

P(ci)

where ¢ = log @
J

i, Ts- Ty . .
b V7Y T, — D3 1;¢j and §;(d) is a linear func-

tion with respect to d known as linear discriminant function, hence the
name LDA.

3.5. Non-negative matrix factorization

Given a set of multivariate N-dimensional data vectors, non-nega-
tive matrix factorization decomposes an NxM matrix V, where M is the
number of examples in the dataset (spoken utterances), into lower rank
matrices W of size NxR and H of size RxM, where typically R < < N and
R < < M, with the constraint that all three matrices are non-negative.
In other words, each data vector in matrix V can be approximated by a
linear combination of the columns of W, weighted by the components of
H (Lee and Seung, 2000)

V~W-H %)

Solution to Eq. (5) can be found by minimizing a cost function be-
tween V and W+ H using the Kullback-Leibler divergence as a distance
measure (Ons et al., 2013a):

Vij
(WH)y

Dy (VI|WH) = Z 2 (w, log—>— — Vj + (WH),.,]

(6)
Convergence towards a local optimum is guaranteed using multi-
plicative update rules, as in Lee and Seung (1999).

When NMF is used in ASR, matrix W represents a dictionary matrix
containing recurrent acoustic patterns (word-like units) and H is a
matrix of activations of these patterns. Utterance-based fixed length
feature vectors are required for NMF, which we obtain by transforming
the acoustic feature vectors into AUD sequences and computing the

2 Available from http://www.cs.grinnell.edu/~weinman/code/ .
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histogram of occurrences of AUDs (Walter et al., 2014).

In addition to the acoustic representation, a weak form of utterance-
based supervision is employed using a label matrix V; which defines a
semantic representation of the utterance given in the form of semantic
frames that consists of slot values. Matrix V, has K rows, where K is the
number of labels and V; ; = n if label i occurs n times in utterance j. The
supervision information links the discovered acoustic patterns to labels
and also helps NMF to avoid local optima of the Kullback-Leibler di-
vergence (Ons et al., 2013b). Renaming V and W to V, and W, re-
spectively, where index a denotes acoustic representation of the input
speech, Eq. (5) can be rewritten as (Ons et al., 2014)

BREE

where W; [KxR] defines recurrent semantic patterns. During the
training V; and V, are estimated from the training data, first KxK entries
in W; are initialized as identity matrix, while last Kx(R — K) entries are
randomly initialized. First K rows in H are initialized with V; and re-
maining R — K rows are randomly initialized. Solutions for W, W, and
H that minimize the distance measure are obtained using update for-
mulas. Using W, acquired in the training process and constructing V,
from the test dataset we use

)

Vlest ~ VVa~HLESt (8)
a
to determine unknown matrix of labels activations
H'*' = argmin Dgg (V|| W, H'est)
Ftest 9

Finally we are able to predict labels in the test dataset and reveal se-
mantic representation of the unseen test utterances by determining the
test label matrix using

‘/;esl ~ ‘/VS-HtESt (10)

3.6. Conditional random fields

Conditional random fields belong to a class of discriminative un-
directed probabilistic graphical models. In probabilistic graphical
models the underlying probability distribution is represented in a gra-
phical form, with a node for each random variable and an edge between
two random variables. The absence of an edge indicates conditional
independence between these variables. Although the graph structure
can in general be arbitrary, the most common structure for sequential
data is the first-order chain (Wallach, 2004).

CRFs are an extension to the MaxEnt model for sequential data.
While MaxEnt assumes that observations can be structured (e.g., se-
quence of words), labels need to be atomic. In CRFs both observations
and labels can be structured. Hence, CRF can take context into account;
e.g., the linear chain CRF can predict sequences of labels for sequences
of input data instances. In our case, since the semantic frame that re-
presents meaning of the spoken utterance is often composed of several
slots, the prediction of one slot value may depend on the choice of the
previous slot value in the semantic frame.

The linear-chain CRF is a special case of CRF that obeys the Markov
property between its neighbouring labels. The conditional distribution
that an input data instance d belongs to a class c for linear-chain CRF
can be defined as (Sutton and McCallum, 2011)

N K
P(cld) = —d) P Z Z wify (¢j» ¢j-1, dj)

( VR et an
where ¢ = ¢ |§’:1 andd = djlf’:l are label sequences and observation se-
quences respectively, f,Ik_; and wi|f_; are feature functions and cor-

responding weight parameters, respectively, and
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N K
Z(d) = Z exp z z wrfy (¢, ¢-1, dj)
¢ j=1 k=1 12)

is a normalizing term that sums over all label sequences. Index j in
Eq. (11) specifies the position in the input sequence d, indicating that
each feature function can depend on observations from any time step.
This makes CRFs naturally suited to exploit the dependencies between
observations, such as neighbouring words in a sentence. Note that the
weights wy are not dependent on the position j. Moving the sum over
the sequence positions in front of the exponential function, we can see
the direct connection to the factor graph representation in undirected
graphical models

1 N
P(eld) = —— TTw(d, ¢)
Z(d) H ' a3)

where each clique in the graph can be represented by a factor node with
the factor (potential function)

K

Z wkfl‘c (Cj, Cj,l, dj))

¥(d, c) = exp(
k=1

14)

The weight parameters wy must be estimated from the training data.
We used the scaled conjugate gradient for learning the weight para-
meters, while inference was done using the forward-backward algo-
rithm.

3.7. Markov logic networks

A Markov network (Markov random field) is a model for the joint

distribution of a set of random variables D = (Dy, D,, ...,Dy)
(Taskar et al., 2007)
1 N
P@ =~ [T w@
j=1 (15)

where d is an assignment of values to D, ¥; is a potential function and
Z=Yuen Hﬁ.\;l ¥,(d) is a normalization constant known as partition
function. There is one node for each variable in the undirected graph
and the model has a potential function for each clique in the graph.
Each variable is conditionally independent of all other variables given
its immediate neighbours. The potentials are usually represented as a

log-linear combination of a set of features ¥; = exp[z;\]:l (cojfj (d))),

hence Eq. (15) can be rewritten as

N
2l (d>]

J=1

1
P(d)=—=exp
z ( 16)

where w; and f; are weight parameters and feature functions respec-
tively.

We consider in this paper a first-order logic extension of Markov
networks called Markov logic networks. First-order logic (FOL) for-
mulae are used to define the relations between variables and interpret
semantics in a particular domain of interest. Let us for example consider
a voice controlled home automation domain. The uttered command
Turn on the light can be interpreted in FOL using a predicate Turn
( < device >, < state > ), with the following assignment to variables:
< device > :=light and < state > :=on. The assignment of constants to
variables is called grounding and the resulting ground predicate in this
case is Turn(light, on). The command Turn off the TV will therefore as-
sociate a different grounding to the same predicate Turn(TV,off). Let us
furthermore define a predicate that indicates presence of a particular
keyword in an uttered command HasWord( < word >, < utterance > )
with a different grounding for each constituent word within the parti-
cular utterance. If the uttered command contains a given word, then the
predicate HasWord is true for the pair ( < word >, < utterance >);
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otherwise it is false. We wish to infer a meaning or a semantic re-
presentation of the spoken command. Therefore, we define a FOL for-
mula that associates a spoken utterance with a possible meaning

HasWord (<word > ,<utterance > ) = Turn(<device > ,<state > )
17)

FOL can be considered as a language to construct templates for
undirected graphical models (Markov networks) (Richardson and
Domingos, 2006). The network nodes in this architecture are ground
predicates, and the edges are the logical connectives used to construct
the formula. Thus, an MLN becomes a Markov network only with re-
spect to a specific grounding. A potential function is associated to each
formula, and takes value 1 when the formula is true or O when it is false.
A weight is assigned to each grounding of the FOL formula in MLN,
which is related to a probability that the formula is satisfied for a
particular truth value assignments to all ground predicates. Hence, MLN
can be defined as a set of weighted FOL formulas. The joint probability
distribution over a set of random variables that correspond to the
groundings of the predicates in FOL formulae is given as

1 F
Z exp[ ; win,-(d)]

where F is the total number of FOL formulae, w; are weights, G; are
groundings of the i-th FOL formula, g(d) is a binary function that takes
value 1 if G; is true and O otherwise. Hence, n;(d) = de G g(d) simply
counts the true groundings of ith FOL formula.
Z=uen exp(ZiF:1 w;n;(d)) is a normalizing term obtained by sum-
ming over all possible groundings of the predicates.

Weights w; are typically learned from training data. We used the
Alchemy 2.0 engine® (Kok et al., 2009) for learning the weights dis-
criminatively using the rescaled conjugate gradient algorithm, while
the inference in MLN was performed using the MC-SAT algorithm
(Poon and Domingos, 2006).

F
P@ = ew| T Y 8@

i=1  geG (18)

4. Experiments

For our experiments, we used task-oriented conversational data
from the DOMOTICA 3 home automation domain and the PATCOR card
game domain, collected in the framework of the ALADIN project
(Gemmeke et al., 2013). For both domains participants were not re-
stricted to any particular words or grammar during the training phase,
but could express their commands freely. This allowed different ex-
pressions for the same command.

4.1. DOMOTICA 3

The DOMOTICA 3 speech corpus contains recordings of speakers
with dysarthria controlling a home automation system. Participants
were 5 male and 4 female, aged between 11 and 61 years, with an
average age of 35, suffering from spastic quadriparesis, ataxic dysar-
thria, severe nasal dysarthria or multiple sclerosis. For all adult
speakers, speech intelligibility scores were obtained by analysing the
recorded speech using the automated tool (Middag, 2012). For one,
child participant, speech intelligibility test was not conducted. A speech
intelligibility score above 85 was considered as non-impaired, while a
score below 70 was considered as severely impaired. All except two
speakers were considered to utter dysarthric speech, two of them with
severe dysarthria (Gemmeke et al., 2013).

The language of the corpus is Belgian Dutch. The corpus was col-
lected in a Wizard-of-Oz study, where the subjects were asked to
command 26 distinct actions for the home automation system, which
was simulated in a 3D computer animation to ensure an unbiased

3 Available from https://alchemy.cs.washington.edu .
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choice of words and grammar by the user (Tessema et al., 2013). The
total length of the dataset used in our experiments is approximately 4
hours of speech, with 2055 utterances spoken by 9 speakers, 228 per
speaker on average.

A typical command in DOMOTICA 3 is: ALADIN lichten in de
woonkamer en keuken uit (ALADIN turn off the lights in the living room and
kitchen). While the commands are fairly short, the major challenge of
the dataset is the fact that pronunciation of dysarthric speakers deviates
from the non-impared ones: rate of speech is lower, segments are pro-
nounced differently, pronunciation is less consistent (Sanders et al.,
2002).

4.2. PATCOR

The PATCOR speech corpus contains recordings of non-patholo-
gical, normal speaking subjects playing a vocally guided card game
patience (solitaire). Participants were 4 male and 4 female, aged be-
tween 23 and 73 years, with an average age of 37 (Gemmeke et al.,
2013). The language of the corpus is Belgian Dutch. The average
number of moves per game session is 55 (Tessema et al., 2013). The
total length of the dataset is approximately 3 hours and 20 minutes,
with 1912 utterances spoken by eight speakers, 239 per speaker on
average.

A typical command in PATCOR is: De harten boer op de klaveren dame
(Put the Jack of hearts on the Queen of clubs). Note the importance of the
order of words here, where the change of word order would change the
meaning of the utterance. Note also that commands such as: De zwarte
dame naar de rode heer (Put the black Queen on the red King) are present
in the dataset, where clearly ambiguous mappings are possible for both
the black Queen (spades or clubs) and the red King (hearts or dia-
monds). An additional challenge is the use of synonyms (e.g. Koning
and Heer may refer to the same card).

4.3. Semantic representation

The training utterances are not mapped to semantic representations
at the word-level, since this would be an expensive and time-consuming
task. Only the action labels indicating the command that is performed
are assigned to each utterance, without the need for literal transcrip-
tions. Semantic frames are used to discover the meaning of the spoken
utterances. A semantic frame is a data structure that is composed of slot
and slot values, which are associated with the action that is expressed in
the spoken command.

The semantic frame structures for DOMOTICA 3 and PATCOR da-
tasets are shown in Tables 1 and 2 respectively (Tessema et al., 2013).
Note that for the PATCOR dataset slots FromSuit, FromValue, TargetSuit
and TargetValue define a chosen card, where 1 denotes an Ace and 13
denotes a King, FromFoundation and TargetFoundation define actions for
the foundation stacks at the top, FromHand defines a pile of remaining

Table 1
DOMOTICA 3 semantic frame structure.
Frame Slot Slot-value
Open/Close Action open, close
Object 1,2,3,... ,6 *
On/Off Action on, off
Object 1,2,3,... ,9 **
TripleCommands Object headrest, standing lamp
Range 1,2,3
IncreaseHeating {} {}

* defines objects: bathroom door, bedroom door, front door, bedroom shutter,
living-room door shutter, living-room window shutter. ** defines objects:
bathroom light, bedroom light, living-room and kitchen light, kitchen light,
kitchen stove light, kitchen table light, reading light, living-room light, all
lights.
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Table 2
PATCOR semantic frame structure.
Frame Slot Slot-value
MoveCard FromSuit spades, diamonds, hearts, clubs
FromValue 1,2,3,...,13
TargetSuit spades, diamonds, hearts, clubs
TargetValue 1,2,3,...,13
FromFoundation 1,2,3,4
TargetFoundation 1,2,3,4
FromColumn 1,2,3,4,5,6,7
TargetColumn 1,2,3,4,5,6,7
FromHand {}
DealCard {} {}

cards used to get more cards if the player runs out of moves and
FromColumn and TargetColumn denote actions for seven columns in the
centre of the playing field. Also note that this is a general frame
structure designed to represent a meaning of every possible command
that might be spoken by any user in a particular domain and that for
most of the users not all the slots will be necessary (for most of them
only the first 6 slots of the MoveCard frame are used). An example se-
mantic frame representation for the utterance Put the Jack of hearts on
the Queen of clubs is shown in Fig. 1. The system picks a frame MoveCard
that represents the meaning conveyed in the utterance and fills its slots
FromSuit, FromValue, TargetSuit and TargetValue accordingly with the
slot values. Not all the slots of the particular frame need to be filled, as
the meaning is completely represented using only four slots.

4.4. Evaluation

Since the dysarthric speech is not consistent and has significant
variation between speakers, speaker dependent training is applied for
each user. Moreover, only limited amount of training data is available
due to an increased effort and quick fatigue of the dysarthric speakers;
hence a cross validation procedure should be used to assess the trained
models. A five-fold cross-validation procedure was used in this paper,
where the dataset is partitioned into five subsets, four of them being
used for training and the remaining one for testing. The cross-validation
procedure is repeated 5 times (folds), with each of the subsets used
exactly once as the test dataset (Despotovic et al., 2015). The folds are
created under the constraint that each slot value should occur at least
once in each fold. Slot values that do not meet this constraint are ex-
cluded, meaning that the corresponding parts of spoken command are
treated as filler words (Ons et al., 2013a).

As a performance measure we use the slot F-score, which is the
harmonic mean of slot precision and slot recall. Slot F-score is a com-
monly used metric in semantic frame based SLU (Wang et al., 2011)

recision-recall
F — score = 2. Precistonrecat

precision + recall (19)

Slot precision is the number of correctly detected slots divided by
the total number of retrieved slots, while slot recall is defined as a
number of correctly detected slots divided by the total number of slots

MoveCard

' ' ! !

FromSuit FromValue TargetSuit TargetValue
hearts 11 clubs 12

Fig. 1. The semantic representation for the utterance Put the Jack of hearts on
the Queen of clubs shown as a tree representation.
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in the reference semantic frame.

. correct slots
precission =

retrieved slots (20)
correct slots
recall = ———
reference slots 21)

That means that only correctly filled slots are accounted; incorrectly
filled slots and false empty slots are penalized (Ons et al., 2013a). Note
that the resulting slot F-score is averaged over all folds.

5. Results and discussion

In most of the voice controlled applications the user is expected to
speak a command from a predefined vocabulary and grammar, where
the language model is defined in the form of domain-specific context-
free grammar and the acoustic model is trained using the transcribed
speech databases. Such models are not suitable for speakers with dys-
arthria, where pronunciation deviates from the standard one. Hence, an
unsupervised approach is employed in this paper for learning the sub-
word units (AUDs) from speech, without the need for a custom pro-
nunciation lexicon or transcribed speech. Word segmentation step is
skipped and the commands are learned directly from the recognized
subword unit sequences, since the word boundaries are hard to dis-
tinguish in dysarthric speech. For each speaker we learn speaker de-
pendent acoustic models of the AUDs from the raw speech, as described
in Section 2.1. The number of AUDs per speaker varied between 77 and
113 AUDs for DOMOTICA 3 and 67 and 98 AUDs for the PATCOR
dataset, depending on the outcome of the unsupervised clustering al-
gorithm. Each spoken utterance is represented using the discovered
sequence of AUDs (Walter et al., 2014). After tokenization (tokens are
AUDs) we find unigram and combination of unigram and bigram fea-
tures, which we use as input to the learning algorithms.

An additional challenge is imposed by the request that the users are
allowed to express their command freely, without the need to use the
exact, predefined words. The system is trained using the examples
spoken by the user. An example of freely spoken command is:

“The heating system should be turned off.”

While some parts of the phrase are informative and can be directly
mapped to commands (e.g. “heating” and “turn off”), there are also
non-informative parts (e.g. “system should be”) which should be ig-
nored. The system needs to find the spoken keywords in the phrase and
learn the association between the keyword and the label associated
with the particular action. However, these mappings are noisy, as the
commands in the training dataset are not always consistent and the
phrases, such as e.g. “Turn off, please!” are also possible, where the
keyword that denotes the preferred device is obviously missing. The
association of spoken keywords to commands is a machine learning
problem, where the command labels introduce a weak form of super-
vision to the machine learning process. For learning mappings to se-
mantic representations we use seven machine learning techniques:
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multinomial naive Bayes, support vector machines, maximum entropy,
linear discriminant analysis, non-negative matrix factorization, condi-
tional random fields and Markov logic networks.

For MLN we need to define a set of first-order rules which map the
AUD sequences to its semantic frame representation. We give an ex-
ample for the PATCOR dataset, but employ a similar analogy to
DOMOTICA 3 dataset.

HasAUD(+a, u) => FromSuit(+s, u)
HasAUD (+a, u) => FromValue(+v, u)
HasAUD(+a, u) => TargetSuit(+s, u)
HasAUD(+a, u) => TargetValue(+v, u)
HasAUD(+a, u) => FromFoundation(+f, u)
HasAUD(+a, u) => TargetFoundation(+f, u)
HasAUD (+a, u) => FromColumn(+c, u)
HasAUD (+a, u) => TargetColumn(+c, u)
HasAUD(+a, u) => FromHand(u)

HasAUD (+a, u) => DealCard(u)

where s € {spades, diamonds, hearts, clubs}, v € {1, 2, ..., 13}, fe{1, 2, 3,
4} and c €{1, 2, ...,7}. The HasAUD(a, u) predicate is an evidence
predicate, which states that a particular AUD (or AUD bigram) a is part
of the AUD sequence (utterance) u. The predicates at the right side of
the implication operator define the mapping of the AUD sequence u to a
particular slot value. The + operator is a per constant operator that
produces a separate clause for each combination of a and slot value. A
separate weight is also learned for each clause obtained in this way. For
more details on the MLN structure the reader is referred to
Despotovic et al. (2015). Finally, we infer the probabilities of mapping
the AUD sequence to each of the slot values given in Table 2. The slot
value with the highest probability is chosen for every slot only if it is
higher than a predefined threshold; hence not all the slots need to be
inferred for a semantic frame.

Obtained slot F-scores for all the tested algorithms for DOMOTICA 3
dataset using unigram and a combination of unigram and bigram fea-
tures are shown in Tables 3 and 4, respectively. The best scores for each
speaker are highlighted. MLNs have a dominant performance for all but
one speaker, outperforming CRFs as the second best technique for 3%
on average using only unigram features. Adding bigrams improves the
scores for all the algorithms in the range of 1.7% for NMF to 3.7% for
LDA. MLNs and CRFs are again dominant over the rest of techniques,
once more MLN having a 3% better F-score than CRF. Note that the best
F-scores are obtained for speakers with the highest intelligibility scores
(17 and 44), while severely impaired speakers with intelligibility scores
below 70 (30 and 41) have lower scores, as expected. However, ob-
serving speakers 28, 29 and 35 with similar intelligibility scores, but a
substantial difference in performance, leads to the conclusion that
consistency in speech production might be as important as intelligibility
in achieving good recognition scores (Doyle et al., 1997).

Precision and recall across different slot values for one speaker with
severe dysarthria (speaker 30) in DOMOTICA 3 dataset is shown in

Table 3
Intelligibility scores and slot F-scores for DOMOTICA 3 dataset using unigram features.
Speaker 17 28 29 30 31 34 35 41 44 Average
Gender F F M M M M F F M
Intelligibility 88.6 73.1 73.6 69 NA* 76.2 72.3 64.2 89.2 75.8
# Utterances 347 204 174 198 225 331 268 144 164 228
MNB 90.2 75 86.5 84.4 67.2 88.8 93.6 80.3 93.1 84.3
SVM 95.4 74.5 89.7 85.7 69.2 91.2 95.5 77.9 91.9 85.7
MaxEnt 94.2 76.7 93.6 84.2 70.5 89 94.4 81.6 95.7 86.6
F-score LDA 90.3 76.3 88.3 87.8 67.9 93.1 92 78.6 95.1 85.5
NMF 96 76.2 94.9 84.4 72.7 87.8 95.4 84.5 91.7 87.1
CRF 96.3 76.7 93.8 87.1 72.1 93 96.3 82.4 96.1 88.2
MLN 98 83.9 97.3 86.7 75.7 96.6 97.7 86.2 929 91.2

*Speech intelligibility test was not conducted for child participants. ** The highest F-score for each speaker is highlighted.
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Table 4
Intelligibility scores and slot F-scores for DOMOTICA 3 dataset using unigram and bigram features.
Speaker 17 28 29 30 31 34 35 41 44 Average
Gender F F M M M M F F M
Intelligibility 88.6 73.1 73.6 69 NA* 76.2 72.3 64.2 89.2 75.8
# Utterances 347 204 174 198 225 331 268 144 164 228
MNB 94.1 79.3 88.8 85.2 73.8 91.4 95.3 86.2 96 87.8
SVM 97.6 76.6 93.5 86.1 73.3 93 97.4 85.2 95.8 88.7
F-score MaxEnt 94.9 79.8 95.9 89.1 74.7 93.3 96.7 83.1 96.6 89.4
LDA 93.2 80.4 90.3 92.5* 76.1 93.7 95.9 86.3 94.6 89.2
NMF 96.3 82 94.5 87.6 74.3 90.2 94.6 86.8 93.3 88.8
CRF 97.7 81.1 96 90.1 76.5 94.3 97.3 87.6 98.8 91.1
MLN 98.5 90.6 97 92.1 83.1 96.2 98.8 91.6 98.8 94.1

*Speech intelligibility test was not conducted for child participants. ** The highest F-score for each speaker is highlighted.
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Fig. 2. Precision and recall (left bar - precision; right bar - recall) for different
slot values for DOMOTICA 3 dataset (speaker 30).

Fig. 2. The results are obtained using the best performing machine
learning algorithm for speaker 30 (LDA) using a combination of uni-
gram and bigram features. Precision and recall were averaged over all
folds. While precision measures the relevance of the inferred slot va-
lues, recall assesses how many correctly inferred slot values were re-
turned. A good classifier returns both accurately retrieved slot values
(high precision), as well as accurately returns a majority of all slot
values (high recall), which is the case for slot values ‘On’ (Aan),
‘Bathroom light’ (Badkamer licht), ‘Headrest’ (Hoofdeinde), ‘Living-
room door shutter’ (Rolluik woonkamer deur), ‘Bedroom light’ (Slaap-
kamer licht), ‘Standing lamp’ (Staande lamp), ‘Off’ (Uit) and ‘Increase

heating’ (Verwarming hoger). A classifier with high precision and low
recall retrieves only few results, but most of them accurately, as in
‘Reading lamp’ (Leeslamp) or ‘Bedroom door’ (Slaapkamerdeur) slot
values. A classifier with high recall and low precision retrieves most of
the results, but some of them incorrectly, as in ‘Living-room light’
(Woonkamer licht) slot value. Analyzing the confusion matrix we found
that the misclassification often occurs for commands that are pro-
nounced similarly, such as e.g. ‘Stand1’ and ‘Stand2’, where false ne-
gatives in case of one slot value (leading to low recall) cause false po-
sitives in case of the other one (leading to low precision).

No explicit method was introduced to improve robustness to re-
cognition errors, due to deviated pronunciation of speakers with dys-
arthria. However, it seems that robustness to noisy input data is an
inherent property of some of the employed machine learning algo-
rithms, especially MLNs. To understand the underlying robustness of
MLNSs, one needs to comprehend its learning process. A separate weight
is learned for mapping of each AUD belonging to each training utter-
ance, to a particular slot value. When the recognition error occurs
during training, the weight associated to this mapping (FOL formula) is
smaller, as there are fewer bad examples in the training dataset. Hence,
the confidence that this FOL formula is true is lower compared to FOL
formula of the error-free examples.

Results for the PATCOR dataset using unigram features show that
the best F-score is obtained using CRFs, outperforming MLNs and LDA
by approximately 1% (see Table 5). Adding the bigrams improves the
performance for all the tested algorithms, leading to best scores ob-
tained using CRFs and MLNs (see Table 6). Early experiments with
higher-order n-grams did not further improve the performance; hence
they were not taken into account.

Since MLNs have proved to have either superior (for speakers with
dysarthria) or of comparable performance (for normal speaking sub-
jects), we employ further improvements only to MLNSs. Let us denote an
MLN model that we presented here a compositional MLN, since frames
are composed of slots, which are composed of slot values. Analysing the
inferred semantic frames we noted that a significant source of error in
compositional MLN was the inference of unwanted additional slots that

Table 5
Slot F-scores for PATCOR dataset using unigram features.
Speaker 1 2 3 4 5 6 7 8 Average
Gender F M M F F M M F
# Utterances 274 169 260 278 221 247 223 240 239
MNB 58.4 77.4 73.8 58.5 79.9 54.6 62.3 47.9 64.1
SVM 56.8 79.8*% 76.1 54.6 84.6 45.1 62.4 43.2 62.8
F-score MaxEnt 60.6 78.1 79.7 53.9 87.2 54.2 71.3 49.3 66.8
LDA 61.9 78.4 77.5 58.1 90.8 55.9 68.3 48.4 67.4
NMF 61.9 66.7 74.6 50.1 89.4 46.7 69.6 41.3 62.5
CRF 63.3 78.2 81.8 59.7 87.1 56.2 71 52.2 68.7
MLN 62.5 77.1 79.6 62.9 88.9 45.8 73 51.1 67.6

*The highest F-score for each speaker is highlighted.
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Table 6
Slot F-scores for PATCOR dataset using unigram and bigram features.
Speaker 1 2 3 4 5 6 7 8 Average
Gender F M M F F M M F
# Utterances 274 169 260 278 221 247 223 240 239
MNB 61.8 81.6 74.7 62 86.5 56.7 72.7 48.3 68
SVM 59.7 80 77.8 57.5 89.4 49.9 65.9 45.1 65.7
F-score MaxEnt 64.7 82.5 82.4 63.1 90.9 60.4 75.7 53.3 71.6
LDA 67.7 82.9 77.7 57.8 93.3 59.9 75.2 51.6 70.8
NMF 66.1 69.3 76.2 55.9 90.9 54.7 77 48.5 67.3
CRF 68.3 83.2 83.2 62.8 89.9 61.5 73 55.4 72.2
MLN 66.3 82.9 80.6 65.1* 91.4 54.8 79.1 56.5 72.1
*The highest F-score for each speaker is highlighted.
Table 7
Slot F-scores for DOMOTICA 3 dataset using different MLN setups.
Speaker 17 28 29 30 31 34 35 41 44 Average
Unigram MLN - compositional 98 83.9 97.3 86.7 75.7 96.6 97.7 86.2 929 91.2
MLN - hierarchical 97.7 83.2 97.3 88.3 75 96 96 87.9 99 91.1
Unigram MLN - compositional 98.5 90.6 97 92.1 83.1 96.2 98.8 91.6 98.8 94.1
+Bigram MLN - hierarchical 98.2 90 96.6 90 81.5 96.7 98.8 91.8 99 93.6
Table 8
Slot F-scores for PATCOR dataset using different MLN setups.
Speaker 1 2 3 4 5 6 7 8 Average
Unigram MLN - compositional 62.5 77.1 79.6 62.9 88.7 45.8 73 51.1 67.6
MLN - compositional (null)* 64.1 79.7 81.6 65.2 93.2 55.5 76.1 52.2 70.9
MLN - hierarchical (null)* 65.1 78.2 81.4 65 92.3 55.3 76.4 50.3 70.5
Unigram + Bigram MLN - compositional 66.3 82.9 80.6 65.1 91.4 54.8 79.1 56.5 72.1
MLN - compositional (null)* 68.4 85.6 83.6 67.4 94.5 65.1 81.4 56.1 75.3
MLN - hierarchical (null)* 68.4 83 83.2 67.6 93.5 66.1 82.2 56.2 75

*Mapping to a null slot value is employed for all the unused slots in semantic frame.

falsely remained above a predefined threshold. It turned out to be very
hard to define a reasonable rejection threshold, which would be a good
trade-off between inferred and rejected slots within a frame. Hence, we
employed a different approach, where the hard threshold is avoided by
mapping the spoken utterance to a null slot value for all the unwanted
slots during the training phase. In this way we not only learn to which
slots the utterance is mapped, we also learn to which ones it should not
be mapped. This resulted in an additional absolute improvement in F-
score of over 3% on average for the PATCOR dataset. This setup was not
applied to DOMOTICA 3 since all the slots are always inferred for each
frame, hence no improvement is possible in this way (Despotovic et al.,
2015).

Let us further assume a hierarchical learning approach where we
first define MLN that learns mappings to slots, then subsequently for
each slot define a separate MLN that learns mappings to its slot values.
We can observe a slight decrease in F-scores for both datasets; however
the major benefit is the fact that the large task can in this way be di-
vided into smaller subtasks. This relaxes one of the main drawbacks of
the MLNs, i.e., the fact that for large tasks the inference is potentially
very slow (Kennington and Schlangen, 2014). There is also a benefit in
terms of computational complexity in the learning phase: learning time
is decreased by 27%. Results for different MLN setups are summarized
in Tables 7 and 8 for datasets DOMOTICA 3 and PATCOR respectively.

6. Conclusions

Machine learning has received much attention in the spoken lan-
guage understanding community in recent years. Our aim in this paper
was to give a comparative analysis of a variety of state-of-the-art ma-
chine learning algorithms for the task of semantic analysis of spoken
input, with an emphasis on application in dysarthric speech, where the

amount of training data is low. Probabilistic undirected graphical
models, such as Markov logic networks and linear-chain conditional
random fields, have shown to substantially outperform all other algo-
rithms tested in this paper. Moreover, MLNs have proved to be ex-
tremely robust to recognition errors, which are caused by imperfect
articulation in dysarthric speech. Coupled with an unsupervised
learning of speech representations the approach is especially applicable
for the semantic analysis in the presence of noisy and inconsistent input
data.

The major drawback is the fact that standard learning algorithms for
both CRFs and MLNs are very slow and do not scale well to large
amounts of training data. The problem is partly addressed here for
MLNs using a hierarchical approach, which decomposes a larger task
into a series of smaller tasks where learning may be more tractable.
These constituent models are considerably faster to train than a full
MLN. However, the application to large and complex domains is still
limited.

The results obtained in this study are encouraging as the un-
supervised learning of subword units, accompanied with weakly su-
pervised semantic analysis, where training utterances require only a
semantic label, allows possibility of recording more data, avoiding the
need for expensive literal transcriptions. However, the datasets con-
sidered in this study were of quite limited semantic variability. It re-
mains a question for future research to investigate how well the pro-
posed approach generalizes to semantically more variable tasks.

Acknowledgements
This work was partly funded by DFG, contract no. Ha 3455/9-1,

within the Priority Program SPP1527 Autonomous Learning.
Vladimir Despotovic was supported by an Erasmus Mundus Action 2



V. Despotovic et al.

scholarship within the EUROWEB scholarship programme.
We wish to thank Jort Gemmeke and Hugo Van hamme from KU
Leuven for making available to us the datasets used in this paper.

References

Bellegarda, J.R., Monz, C., 2016. State of the art in statistical methods for lang. and
speech processing. Comput. Speech Language 35, 163-184. http://dx.doi.org/10.
1016/j.cs1.2015.07.001.

Berger, A.L., Della Pietra, S.A., Della Pietra, V.J., 1996. A maximum entropy approach to
natural language processing. Comput. Ling. 22 (1), 39-71.

Boulis, C., Ostendorf, M., 2005. Text classification by augmenting the bag-of-words re-
presentation with redundancy-compensated bigrams. International Workshop in
Feature Selection in Data Mining. pp. 9-16.

Chang, C.C., Lin, C.J., 2011. LIBSVM: a library for support vector machines. ACM Trans.
Intell. Syst. Technol. 2 (3). http://dx.doi.org/10.1145/1961189.1961199.

Christensen, H., Green, P., Hain, T., 2013. Learning speaker-specific pronunciations of
disordered speech. 14th Annual Conference of the International Speech
Communication Association (INTERSPEECH 2013), Lyon, France. pp. 1159-1163.

Coppola, B., Moschitti, A., Riccardi, G., 2009. Shallow semantic parsing for spoken lan-
guage understanding. Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the Association for
Computational Linguistics, Companion Volume: Short Papers. pp. 85-88.

Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20 (3), 273-297.
http://dx.doi.org/10.1023/A:1022627411411.

Deoras, A., Tur, G., Sarikaya, R., D. Hakkani-Tiir, D., 2013. Joint discriminative decoding
of words and semantic tags for spoken language understanding. IEEE Trans. Audio
Speech Lang. Process. 21 (8), 1612-1621. http://dx.doi.org/10.1109/TASL.2013.
2256894.

Despotovic, V., Haeb Umbach, R., Walter, O., 2015. Semantic analysis of spoken input
using Markov logic networks. 16th Annual Conference of the International Speech
Communication Association (INTERSPEECH 2015), Dresden, Germany. pp.
1859-1863.

Doyle, P., Leeper, H., Kotler, A.-L., Thomas-Stonell, N., ONeill, C., Dylke, M.-C., Rolls, K.,
1997. Dysarthric speech: a comparison of computerised speech recognition and lis-
tener intelligibility. J. Rehabil. Res. Dev. 34 (3), 309-316.

Dufty, J.R., 2012. Motor Speech Disorders: Substrates, Differential Diagnosis, and
Management, Third edition. Mosby.

Gaspers, J., Cimiano, P., 2014. Learning a semantic parser from spoken utterances. IEEE
International Conference on Acoustics, Speech and Signal Processing, (ICASSP 2014),
Florence, Italy. pp. 3201-3205.

Gemmeke, J.F., Ons, B., Tessema, N., hamme, H.V., van de Loo, J., Pauw, G.D.,
Daelemans, W., Huyghe, J., Derboven, J., Vuegen, L., Broeck, B.V.D., Karsmakers, P.,
Vanrumste, B., 2013. Self-taught assistive vocal interfaces: an overview of the
ALADIN project. 14th Annual Conference of the International Speech Communication
Association (INTERSPEECH 2013), Lyon, France. pp. 2039-2043.

Kartsaklis, D., 2014. Compositional Distributional Semantics with Compact Closed
Categories and Frobenius Algebras. Ph.D. thesis. University of Oxford, UK.

Kennington, C., Schlangen, D., 2014. Situated incremental natural language under-
standing using Markov logic networks. Comput. Speech Lang. 28 (1), 240-255.
http://dx.doi.org/10.1016/j.cs1.2013.06.004.

Khot, T., Balasubramanian, N., Gribkoff, E., Sabharwal, A., Clark, P., Etzioni, O., 2015.
Exploring Markov logic networks for question answering. Conference on Empirical
Methods in Natural Language Processing, Lisbon, Portugal. pp. 685-694.

Kilimci, Z.H., Ganiz, M.C., 2015. Evaluation of classification models for language pro-
cessing. International Symposium on Innovations in Intelligent Systems and
Applications (INISTA 2015), Madrid, Spain. pp. 1-8. http://dx.doi.org/10.1109/
INISTA.2015.7276787.

Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J., Domingos,
P., 2009. The Alchemy System for Statistical Relational Al Technical Report.
Department of Computer Science and Engineering, University of Washington,
Seattle, WA.

Lansford, K.L., Liss, J.M., Caviness, J.N., Utianski, R.L., 2011. A cognitive-perceptual
approach to conceptualizing speech intelligibility deficits and remediation practice in
hypokinetic dysarthria. Parkinsons Dis.,. Article ID 150962.

Lee, D.D., Seung, H.S., 1999. Learning the parts of objects by nonnegative matrix fac-
torization. Nature 401, 788-791. http://dx.doi.org/10.1038/44565.

Lee, D.D., Seung, H.S., 2000. Algorithms for non-negative matrix factorization. Advances
in Neural Information Processing 13 (NIPS 2000).

Lenci, A., 2008. Distributional semantics in linguistic and cognitive research. Riv. Ling. 20
(1), 1-31.

Mairesse, F., Gasic, M., Jurccek, F., Keizer, S., Thomson, B., Yu, K., Youngx, S., 2009.
Spoken language understanding from unaligned data using discriminative classifi-
cation models. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2009), Taipei. pp. 4749-4752. http://dx.doi.org/10.1109/
ICASSP.2009.4960692.

Manning, C.D., Raghavan, P., Schtze, M., 2008. Introduction to Information Retrieval.
Cambridge University Press.http://dx.doi.org/10.1017/CBO9780511809071.

McCallum, A., Nigam, K., 1998. A comparison of event models for Naive Bayes text
classification. AAAI/ICML-98 Workshop on Learning for Text Categorization,

Speech Communication 99 (2018) 242-251

Madison, WI, USA. pp. 41-48.

Mengistu, K.T., Rudzicz, F., 2011. Comparing humans and automatic speech recognition
systems in recognizing dysarthric speech. Adv. Artif. Intell. 291-300.

Middag, C., 2012. Automatic analysis of pathological speech. Ph.D. thesis. Ghent
University, Belgium.

Milgram, J., Cheriet, M., Sabourin, R., 2006. “One against one” or “One against all”:
which one is better for handwriting recognition with SVMs? Tenth International
Workshop on Frontiers in Handwriting Recognition, La Baule, France.

Montague, R., 1970. Universal grammar. Theoria 36, 373-398.

Mori, R.D., Béchet, F., Hakkani-Tiir, D., McTear, M., Riccardi, G., Tur, G., 2008. Spoken
language understanding—interpreting the signs given by a speech signal. IEEE Signal
Process. Mag. 25 (3), 50-58. http://dx.doi.org/10.1109/MSP.2008.918413.

Newman, M.E.J., Girvan, M., 2004. Finding and evaluating community structure in net-
works. Phys. Rev. E 69 (2). http://dx.doi.org/10.1103/PhysRevE.69.026113.

Nigam, K., Laferty, J., McCallum, A., 1999. Using maximum entropy for text classifica-
tion. IJCAI-99 Workshop on Machine Learning for Information Filtering, Stockholm,
Sweden. pp. 61-67.

Ons, B., Gemmeke, J., Van hamme, H., 2014. The self-taught vocal interface. EURASIP J.
Audio Speech Music Process. 43. http://dx.doi.org/10.1186/513636-014-0043-4.

Ons, B., Gemmeke, J.F., Van hamme, H., 2013. NMF-based keyword learning from scarce
data. IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU
2013), Olomouc, Czech Republic. pp. 392-397. http://dx.doi.org/10.1109/ASRU.
2013.6707762.

Ons, B., Tessema, N., van de Loo, J., Gemmeke, J., Pauw, G.D., Daelemans, W., hamme,
H.V., 2013. A self learning vocal interface for speech-impaired users. 4th Workshop
on Speech and Language Processing for Assistive Technologies (SLPAT), Lyon,
France. pp. 78-81.

Poon, H., Domingos, P., 2006. Sound and efficient inference with probabilistic and de-
terministic dependencies. The 21st National Conference on Artificial Intelligence
(AAAI ’06), Boston, Massachusetts, USA. pp. 458-463.

Porter, F.C., Narsky, 1., 2013. Statistical Analysis Techniques in Particle Physics. Wiley.

Richardson, M., Domingos, P., 2006. Markov logic networks. Mach. Learn. 62 (1-2),
107-136.

Sanders, E., Ruiter, M.B., Beijer, L., Strik, H., 2002. Automatic recognition of dutch
dysarthric speech: a pilot study. 7th International Conference on Spoken Language
Processing, ICSLP2002 - INTERSPEECH 2002, Denver, Colorado, USA.

Singh, B., Rani, V., Mahajan, N., 2012. Preprocessing in ASR for computer machine in-
teraction with humans: a review. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2 (3),
396-399.

Sutton, C., McCallum, A., 2011. An introduction to conditional random fields. Found.
Trends Mach. Learn. 4 (4), 267-273. http://dx.doi.org/10.1561/2200000013.

Taskar, B., Abbeel, P., Wong, M., Koller, D., 2007. Relational Markov Networks. In:
Getoor, L., Taskar, B. (Eds.), Introduction to Statistical Relational Learning. MIT
Press, chapter 6, pp. 175-199.

Tessema, N., Ons, B., van de Loo, J., Gemmeke, J., De Pauw, G., Daelemans, W., Van
hamme, H., 2013. Metadata for Corpora PATCOR and Domotica-2. Technical Report.
KU Leuven.

Tur, G., De Mori, R., 2011. Spoken Language Understanding: Systems for Extracting
Semantic Information from Speech. John Wiley & Sons Ltd.

Wallach, H.M., 2004. Conditional Random Fields: An Introduction, Technical Report MS-
CIS-04-21. Technical Report. Department of Computer and Information Science,
University of Pennsylvania.

Walter, O., Despotovic, V., Haeb-Umbach, R., Gemmeke, J., Ons, B., Van hamme, H.,
2014. An evaluation of unsupervised acoustic model training for a dysarthric speech
interface. 15th Annual Conference of the International Speech Communication
Association (INTERSPEECH 2014), Singapore. pp. 1013-1017.

Walter, O., Korthals, T., Haeb-Umbach, R., Raj, B., 2013. Hierarchical System for Word
Discovery Exploiting DTW-Based Initialization. Automatic Speech Recognition and
Understanding Workshop (ASRU 2013). pp. 386-391.

Wang, Y., Deng, L., Acero, A., 2011. Semantic Frame-based Spoken Language
Understanding. In: Tur, G., Mori, R.D. (Eds.), Spoken Language Understanding:
Systems for Extracting Semantic Information from Speech. Wiley, pp. 41-91. http://
dx.doi.org/10.1002/9781119992691.ch3.

Wang, Y.Y., 2010. Strategies for statistical spoken language understanding with small
amount of data - an empirical study. 11th Annual Conference of the International
Speech Communication Association (INTERSPEECH 2010), Makuhari, Chiba, Japan.
pp. 2498-2501.

Wang, Y.Y., Acero, A., 2006. Discriminative models for spoken language understanding.
International Conference on Spoken Language Processing, Pittsburgh, PA, USA. pp.
1766-1769.

Weilin, W., Ruzhan, L., Liu, Z., 2003. Comparative experiments on task classification for
spoken language understanding using Naive Bayes classifier. International
Conference on Natural Language Processing and Knowledge Engineering, Beijing,
China. pp. 492-497. http://dx.doi.org/10.1109/NLPKE.2003.1275955.

Weinman, J., Lidaka, A., Aggarwal, S., 2011. Large-scale Machine Learning. In: mei W.
Hwu, W. (Ed.), GPU Computing Gems Emerald Edition. Morgan Kaufmann
Publishers, pp. 277-291. http://dx.doi.org/10.1016/B978-0-12-384988-5.00019-X.

Wutiwiwatchai, C., Furui, S., 2003. Confidence scoring for ann based spoken language
understanding. IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU 2003), St. Thomas, U.S. Virgin Islands. pp. 566-571. http://dx.doi.org/10.
1109/ASRU.2003.1318502.


http://dx.doi.org/10.1016/j.csl.2015.07.001
http://dx.doi.org/10.1016/j.csl.2015.07.001
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0002
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0002
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0003
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0003
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0003
http://dx.doi.org/10.1145/1961189.1961199
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0005
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0005
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0005
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0006
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0006
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0006
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0006
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1109/TASL.2013.2256894
http://dx.doi.org/10.1109/TASL.2013.2256894
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0009
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0009
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0009
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0009
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0010
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0010
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0010
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0011
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0011
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0012
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0012
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0012
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0013
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0013
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0013
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0013
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0013
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0014
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0014
http://dx.doi.org/10.1016/j.csl.2013.06.004
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0016
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0016
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0016
http://dx.doi.org/10.1109/INISTA.2015.7276787
http://dx.doi.org/10.1109/INISTA.2015.7276787
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0018
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0018
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0018
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0018
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0019
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0019
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0019
http://dx.doi.org/10.1038/44565
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0021
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0021
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0022
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0022
http://dx.doi.org/10.1109/ICASSP.2009.4960692
http://dx.doi.org/10.1109/ICASSP.2009.4960692
http://dx.doi.org/10.1017/CBO9780511809071
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0025
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0025
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0025
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0026
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0026
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0027
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0027
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0028
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0028
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0028
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0029
http://dx.doi.org/10.1109/MSP.2008.918413
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0032
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0032
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0032
http://dx.doi.org/10.1186/s13636-014-0043-4
http://dx.doi.org/10.1109/ASRU.2013.6707762
http://dx.doi.org/10.1109/ASRU.2013.6707762
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0035
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0035
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0035
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0035
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0036
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0036
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0036
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0037
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0038
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0038
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0039
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0039
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0039
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0040
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0040
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0040
http://dx.doi.org/10.1561/2200000013
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0042
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0042
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0042
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0043
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0043
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0043
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0044
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0044
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0045
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0045
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0045
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0046
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0046
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0046
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0046
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0047
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0047
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0047
http://dx.doi.org/10.1002/9781119992691.ch3
http://dx.doi.org/10.1002/9781119992691.ch3
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0049
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0049
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0049
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0049
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0050
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0050
http://refhub.elsevier.com/S0167-6393(17)30124-3/sbref0050
http://dx.doi.org/10.1109/NLPKE.2003.1275955
http://dx.doi.org/10.1016/B978-0-12-384988-5.00019-X
http://dx.doi.org/10.1109/ASRU.2003.1318502
http://dx.doi.org/10.1109/ASRU.2003.1318502

	Machine learning techniques for semantic analysis of dysarthric speech: An experimental study
	Introduction
	Acoustic preprocessing
	Acoustic representation
	Feature set

	Machine learning techniques for semantic analysis
	Multinomial naive Bayes
	Support vector machines
	Maximum entropy
	Linear discriminant analysis
	Non-negative matrix factorization
	Conditional random fields
	Markov logic networks

	Experiments
	DOMOTICA 3
	PATCOR
	Semantic representation
	Evaluation

	Results and discussion
	Conclusions
	Acknowledgements
	References




