

Computer Science, Electrical Engineering and Mathematics NT Communications Engineering Prof. Dr.-Ing. Reinhold Häb-Umbach

- application (Google Home)
- with block-wise updates

(a) Smoothing:

$$\lambda_{t,f} = \frac{1}{\left(\delta_{\mathrm{L}} + \delta_{\mathrm{R}} + 1\right)D} \sum_{\tau=t-\delta_{\mathrm{L}}}^{t+\delta_{\mathrm{R}}} \sum_{d} |y_{\tau,f,d}|^{2}$$

- (b) DNN:
 - $1 \times 512 \times LSTM + 2 \times 2048 \times Dense + Output$
 - Operates on single channel, final estimate averaged
 - Trained to estimate PSD of target image

Frame-online DNN-WPE dereverberation

Jahn Heymann¹, Lukas Drude¹, Reinhold Haeb-Umbach¹, Keisuke Kinoshita², Tomohiro Nakatani²

¹Paderborn University, Department of Communications Engineering, Paderborn, Germany ²NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan

¹{heymann, drude, haeb}@nt.upb.de/²{kinoshita.k, nakatani.tomohiro}@lab.ntt.co.jp

Conclusion

DNN PSD estimator improves performance for frame-online WPE dereverberation over smoothing PSD estimator by 5% - 10% in highly reverberant and noisy reverberant conditions

	 Batch 	solution:				
		$\mathbf{R}_{f} = \sum_{t} \frac{\tilde{\mathbf{y}}_{t-\Delta,f} \tilde{\mathbf{y}}_{t-\Delta,f}^{H}}{\lambda_{t,f}}$				
- 4 3	Step 1	$\mathbf{p}_{f,d} = \sum_{t} \frac{\mathbf{\tilde{y}}_{t-\Delta,f} \mathbf{y}_{t,f,d}^*}{\lambda_{t,f}}$				
3 2 I		$\mathbf{g}_{f,d} = \mathbf{R}_f^{-1} \mathbf{p}_{f,d}$				
I	Original WPE only (iterates between steps):					
	Step 2	$\lambda_{t,f} = \frac{1}{(2\delta + 1)D} \sum_{\tau=t-\delta}^{t+\delta} \sum_{d} \hat{x}_{\tau,f,d}^{(early)} ^2$				
.com/:	fgnt/nar					

word error rate / %

ck-	Online	Online						
ch	8ch	2ch	8 ch					
17.6								
-	-	-	-					
.7	14.0	17.4	16.2					
.5	12.7	15.6	14.6					

• WSJ+VoiceHome

	Offline		Block-Online		Online	
	2 ch	8ch	2 ch	8ch	2ch	8ch
Unprocessed	24.3					
Iteration	18.7	17.2	-	-	-	-
(a) Smoothing	20.3	18.6	20.8	19.5	20.9	20.0
(b) DNN	19.1	18.0	20.3	18.7	20.0	19.4

Outlook

 Recursive solution (frame-online): $\mathbf{R}_{t,f} = \sum_{t=1}^{t} \alpha^{t-\tau} \frac{\mathbf{\tilde{y}}_{\tau-\Delta,f} \mathbf{\tilde{y}}_{\tau-\Delta,f}}{\mathbf{\lambda}_{\tau-\Delta,f}}$ $\mathbf{K}_{t,f} = \frac{\mathbf{R}_{t-1,f}^{-1} \mathbf{\tilde{y}}_{t-\Delta,f}}{\alpha \mathbf{\lambda}_{t,f} + \mathbf{\tilde{y}}_{t-\Delta,f}^{\mathsf{H}} \mathbf{R}_{t-1,f}^{-1} \mathbf{\tilde{y}}_{t-\Delta,f}}$ $\mathbf{R}_{t,f}^{-1} = \frac{1}{\alpha} \left(\mathbf{R}_{t-1,f}^{-1} - \mathbf{K}_{t,f} \tilde{\mathbf{y}}_{t-\Delta,f}^{H} \mathbf{R}_{t-1,f}^{-1} \right)$ $\mathbf{G}_{t,f} = \mathbf{G}_{t-1,f} + \mathbf{K}_{t,f} \mathbf{x}_{t,f}^{(\text{early})^{H}}$

WSJ convolved with VoiceHome RIRs (T60: 395 – 585 ms) Very dynamic households background noise Blocks of 2s and forgetting factor of 0.7 for Block-Online

word error rate / %

 Joint training of DNN PSD estimator and acoustic model • Compare with different model based PSD estimators