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ABSTRACT

Signal dereverberation using the weighted prediction error
(WPE) method has been proven to be an effective means to
raise the accuracy of far-field speech recognition. But in its
original formulation, WPE requires multiple iterations over a
sufficiently long utterance, rendering it unsuitable for online
low-latency applications. Recently, two methods have been
proposed to overcome this limitation. One utilizes a neu-
ral network to estimate the power spectral density (PSD) of
the target signal and works in a block-online fashion. The
other method relies on a rather simple PSD estimation which
smoothes the observed PSD and utilizes a recursive formula-
tion which enables it to work on a frame-by-frame basis. In
this paper, we integrate a deep neural network (DNN) based
estimator into the recursive frame-online formulation. We
evaluate the performance of the recursive system with differ-
ent PSD estimators in comparison to the block-online and of-
fline variant on two distinct corpora. The REVERB challenge
data, where the signal is mainly deteriorated by reverberation,
and a database which combines WSJ and VoiceHome to also
consider (directed) noise sources. The results show that al-
though smoothing works surprisingly well, the more sophis-
ticated DNN based estimator shows promising improvements
and shortens the performance gap between online and offline
processing.

Index Terms— speech recognition, online speech en-
hancement, dereverberation

1. INTRODUCTION

Despite all recent advances in acoustic modeling, (multi-
channel) signal enhancement still improves the performance
of an automatic speech recognition (ASR) system, especially
in challenging far-field scenarios. Apart from interfering
sources and noise, reverberation has the most severe impact
on the intelligibility of the target speech signal. The in-
terfering signals are commonly suppressed by some sort of
beamforming, while the latter impairment can be addressed
with signal processing aimed at suppressing the late rever-
beration. Many techniques have been proposed for signal

dereverberation, which can be broadly categorized in linear
filtering approaches and spectral subtraction like approaches
for magnitude or power spectrum manipulation [1]. The WPE
method falls in the first category. First proposed by Nakatani
et al. in 2008 [2], it showed very good performance in the
REVERB challenge [3, 4] and is now used in commercially
successful products such as the Google Home [5, 6].

WPE dereverberates the signal by estimating an inverse
filter which is then used to subtract the reverberation tail from
the observation. It can operate either on a single channel or
in a multiple-input multiple-output fashion on multi-channel
data. The quality of this filter mainly depends on the esti-
mation of the PSD of the target, i.e., the anechoic speech
signal and its early reflections, which we will call ”direct
speech” in the following. Since this signal is unknown, the
conventional WPE works iteratively by alternating between
two steps: (Step 1) Dereverberating the signal using the cur-
rent estimate of the direct speech PSD, and, (Step 2) esti-
mating the direct speech PSD using the current estimate of
the dereverberated signal. Alternating these two steps gradu-
ally improves the estimate of both, the (dereverberated) target
signal and the direct speech PSD. This, however, inherently
makes the vanilla WPE an offline method and computation-
ally expensive.

To overcome this dependency issue – and enable a (block-
wise) online usage of WPE – Kinoshita et al. proposed to uti-
lize a neural network to directly estimate the PSD from the
observation [7]. In their work, they show that their proposed
system was as effective as the vanilla WPE front-end in terms
of dereverberation performance. However, iterations were no
longer necessary and the block length, on which the derever-
beration filter was estimated, could be considerably reduced
– a major step towards an online low-latency solution.

An alternative approach towards an online solution was
taken in [6]. Here, the authors use a smoothed version of the
observed signal PSD as an approximation for the direct signal
PSD and also use a recursive formulation of WPE as proposed
in [8]. This option was chosen in order to enable real-time,
frame-by-frame dereverberation. However, it remains unclear
how much the performance is affected by the rather simple
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approximation of the PSD and how this system compares to
an offline version.

In this work, we consider a combination of both ap-
proaches. We investigate if the recursive formulation can
profit from a more sophisticated PSD estimation and how
the latency constraint impacts the overall performance of the
system compared to the offline and block-online variant.

The remainder of the paper is organized as follows. First,
we formalize the scenario and review the WPE algorithm in
its offline formulation as well as the block-online and recur-
sive, frame-by-frame, variant. We then describe the integra-
tion of the neural network based PSD estimator and how it
enables online processing and compare the performance of
the proposed systems on two different corpora. Finally we
draw conclusions from the conducted experiments and give
some outlook for future work.

2. SCENARIO AND SIGNAL MODEL

Using D microphones, we observe a signal which is repre-
sented as the D-dimensional vector yt,f at time frame index
t and frequency bin index f in the short time Fourier transfor-
mation (STFT) domain. In a far-field scenario, this signal is
impaired by (convolutive) reverberation. We assume, that for
ASR the early part of the room impulse response (RIR) is ben-
eficial whereas the reverberation tail deteriorates the recogni-
tion and should therefore be suppressed. Specifically, we con-
sider the first 50 ms after the main peak of the RIR (h(early))
to contribute to the direct signal whereas the remaining part
(h(tail)) is the cause of the distortions. In the STFT domain
we denote this model as follows:

yt,f = x
(early)
t,f + x

(tail)
t,f , (1)

where x
(early)
t,f and x

(tail)
t,f are the STFTs of the source signal

convolved with the early part of the RIR and with its tail, re-
spectively. Note that we explicitly allow RIRs longer than the
length of an DFT window.

3. WEIGHTED PREDICTION ERROR

The underlying idea of WPE is to estimate the reverberation
tail of the signal and subtract it from the observation to ob-
tain an optimal estimate of the direct speech in a maximum
likelihood sense.

Given filter weights gτ,f,d,d′ , a single-channel estimate of
the clean speech obtained from multi-channel input can be
obtained:

x̂
(early)
t,f,d = yt,f,d −

∆+K−1∑
τ=∆

∑
d′

g∗τ,f,d,d′yt−τ,f,d′

= yt,f,d − gH
f,dỹt−∆,f . (2)

The delay ∆ > 0 is introduced to avoid whitening of the
speech source, K is the number of filter taps, d and d′ are
the microphone index and gfd and ỹt−∆,f are stacked rep-
resentations of the filter weights and the observations. WPE
maximizes the likelihood of the model under the assumption
that the direct signal is a realization of a zero-mean complex
Gaussian with an unknown time-varying variance λtf :

p(x
(early)
t,f,d ; 0, λt,f ) = CN (x

(early)
t,f,d ; 0, λt,f ). (3)

There is no closed form solution for the likelihood opti-
mization, but an iterative procedure which alternates between
estimating the filter coefficients gfd and the time-varying
variance λtf exists:

Step 1) Rf =
∑
t

ỹt−∆,f ỹ
H
t−∆,f

λt,f
, (4)

pf,d =
∑
t

ỹt−∆,fy
∗
t,f,d

λt,f
, (5)

gf,d = R−1
f pf,d (6)

Step 2) λt,f =
1

(δ + 1 + δ)D

t+δ∑
τ=t−δ

∑
d

|x̂(early)
τ,f,d |

2. (7)

The heuristically chosen context of (δ + 1 + δ) frames
helps to improve the variance estimate in this iterative
scheme [9].

Once we have an estimator for the PSD λt,f which only
relies on the observation, the block-online solution is straight-
forward and simply consists of applying the Eqs. 4 – 6 and
Eq. 2 to a signal block.

To arrive at the recursive variant, the correlation matrix is
estimated with a decaying window:

Rt,f =

t∑
τ=0

αt−τ
ỹτ−∆,f ỹ

H
τ−∆,f

λτ,f
. (8)

This leads to a solution with the following updates [6]:

Kt,f =
R−1
t−1,f ỹt−∆,f

αλt,f + ỹH
t−∆,fR

−1
t−1,f ỹt−∆,f

(9)

R−1
t,f =

1

α

(
R−1
t−1,f −Kt,f ỹ

H
t−∆,fR

−1
t−1,f

)
(10)

Gt,f = Gt−1,f + Kt,fx
(early)
t,f

H
. (11)

Gt,f consists of the now time variant stacked filter taps
for each microphone. This is in essence a Recursive Least
Squares (RLS) adaptive filter for the reverberation estimation.
The authors of [6] approximate the PSD of the target signal
using a smoothed PSD of the observation averaged over the
microphones using a left and right context δL and δR:

λt,f =
1

D
· 1

δL + 1 + δR

t+δR∑
τ=t−δL

∑
d

|yτ,f,d|2. (12)
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4. PROPOSED FRAMEWORK

4.1. PSD estimation

The optimal filter coefficients for WPE can be calculated in
closed form with Eq. 6 or adaptively with Eq. 11 if the statis-
tics λt,f of the underlying target signal are known. Since we
can only observe the reverberant signal, these statistics have
to be estimated. While many model based techniques exist
for this task (see e.g. [10] for an overview), we focus on a
neural network based estimator in this work. This choice is
motivated by the recent successes of these models in similar
settings such as the estimation of the (cross-channel) covari-
ance matrix for beamforming (e.g. [11], [12]).

In particular, we use the same network architecture as pro-
posed by [7]. The network consists of a long short-term mem-
ory (LSTM) layer with 512 units, two linear layers with 2048
units and ReLU activation functions and a final linear layer
with 256 units. It operates on a single channel and the final
estimate is obtained by averaging over all channels.

We also consider estimating λt,f by a smoothing of the
spectrum as specified by Eq. 12. As a baseline, we set δL = 1
and δR = 0 which corresponds to what is proposed in [6].

4.2. Acoustic model

Our acoustic model is a wide bi-directional residual network
(WBRN) as proposed in [13]. It consists of several convo-
lutional layers with residual connections, followed by two
BLSTM layers and two linear layers. The hyper-parameters
were adapted from [13]. Note that the acoustic model itself
operates offline since we focus on the effects of the front-end
but can be replaced by an online version to achieve a fully
online operating system.

4.3. Training

For the PSD estimator, we reimplemented the procedure de-
scribed in [7] except that we use ADAM instead of vanilla
SGD and dropout 25 % of the units before each affine trans-
formation. The target for the PSD estimator is the direct
speech PSD (i.e. the clean speech convolved with the first
50 ms of the RIR) and we use the mean squared error as a
cost function.

The acoustic model is first trained on frame-wise senone
targets on the multi-condition (i.e. reverberated and noisy)
data of the respective corpus. For each WPE front-end vari-
ant, we then use this initial model and fine-tune it using the
dereverberated data. To further increase the acoustic variabil-
ity, we sample the hyper-parameters of WPE during this fine-
tune stage. Specifically, we use 5 or 10 filter taps (K) and
uniformly sample the delay (∆) to be in the range between 1
and 4.

5. EVALUATION

To compare the described approaches, we evaluate the sys-
tems in terms of word error rates (WERs) on the data of
the REVERB challenge as well as on Wall Street Journal
(WSJ)+VoiceHome data.

All models were implemented in Tensorflow r1.6 and we
make our WPE implementation publicly available1.

According to preliminary experiments, we use a DFT
window size of 512 (32 ms) and shift of 128 (8 ms) as well as
α = 0.9999 for the recursive WPE variant and 3 iterations for
vanilla WPE. For all variants, we vary the delay parameter
in a range between 1 and 4 and the number of filter taps is
set to either 5 or 10. We then choose the best configuration
according to the results on the development set.

The baselines are Unprocessed and Iteration. The former
uses no enhancement and the latter is vanilla WPE. Those
baselines are compared with Smooth, where the PSD is ap-
proximated by smoothing the observation as in Eq. 12 and
DNN, which uses a separately trained PSD estimation net-
work just as in [7].

These systems are evaluated for three different latency
constraints (where applicable): offline, block-online and on-
line. Offline means, that the whole utterance is available for
processing. In the block-online setting, the system is pro-
vided with blocks of 2 s, which is the same duration as used
in [7]. The former two settings both use the WPE formulation
as outlined by Eq. 4 – Eq. 6. For the block-online processing,
the estimation of the statistics is smoothed with a forgetting
factor of 0.7 between the blocks which do not overlap. For
the online setting, we use the recursive formulation of WPE
(Eq. 9 – Eq. 11) and the system operates on a frame-by-frame
basis.

5.1. Results on REVERB challenge data

The REVERB challenge dataset [4] contains simulated
and real utterances. For simulated data WSJCAM0 utter-
ances [14] are convolved with measured RIRs. Noise is
added with approximately 20 dB signal to noise ratio (SNR).
Reverberation times (T60) are in the range of 0.25 – 0.7 s.
The real data consists of utterances from the MC-WSJ-AV
corpus [15] which are recorded in a noisy reverberant room
with a reverberation time of approximately 0.7 s. The corpus
is known for its mismatch between the simulated data used
during training and the real recordings for evaluation. To
reduce this discrepancy, we randomly sample the SNR to be
in the range of 5 dB – 30 dB and scale the signal with 0.2 to
reduce scale mismatch between simulated and real data for
the training of the PSD estimators as well as the fine-tuning of
the acoustic model. The initial variant of the acoustic model
is trained on unmodified data. We evaluate the performance
on the eight as well as on the two channel task. Since WPE

1https://www.github.com/fgnt/nara_wpe
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Table 1: WERs/% for all systems evaluated on the REVERB
real evaluation dataset averaged over near and far results.

Offline Block-Online Online

2 ch 8 ch 2 ch 8 ch 2 ch 8 ch

Unprocessed 17.6

Iteration 14.4 10.9 - - - -
Smooth 16.1 13.0 15.7 14.0 17.4 16.2

DNN 14.3 10.8 14.5 12.7 15.6 14.6

preserves the number of channels and our acoustic model is
a single-channel model, we always only use the first micro-
phone channel for decoding. The decoder uses the standard
3-gram WSJ0 language model.

The results for this dataset are shown in Tbl. 1. First, it can
be seen that WPE improves upon the unprocessed baseline in
all cases. The baseline itself also proves to be a strong one.
For comparison, a GMM-based Kaldi system achieves a WER
of around 31 % 2 and a DNN system based on the CHiME-3
recipe 3 results in a WER of 24 %. In general, the WER gets
worse as the latency goes down as it is to be expected. This
trend is especially visible for eight microphones. With two
microphones, the gap between the offline and online version
is much smaller as the WERs are worse in the offline case
to begin with. But even in the worst case (2 microphones,
online), the DNN-based system still yields an improvement
of over 10 % over the unprocessed baseline. The benefits of
a more sophisticated PSD estimator are also clearly visible.
Using the DNN-based estimator improves the results in all
scenarios compared to the smoothed PSD by roughly 10 %–
20 % relative. In the offline scenario, it is able to match the
result of the iterating baseline but avoids the iterations.

5.2. Results on WSJ with VoiceHome RIRs and noise

Similar to the simulation setup proposed by Bertin et al. [16]
WSJ utterances (test eval92 5k) are convolved with
VoiceHome RIRs and VoiceHome background noise [17]
with reverberation times (T60) in the range of 395 – 585 ms.
Worth noting, the RIRs are recorded in three different houses,
such that training, cross-validation and test can use disjoint
RIRs to ensure generalization. The VoiceHome background
noise is very dynamic and typically found in households e.g.
vacuum cleaner, dish washing or interviews on television.

The results in Tbl. 2 show the same tendencies as already
described for the REVERB data but the margins are overall
smaller. The iterating version now achieves slightly better

2https://github.com/kaldi-asr/kaldi/blob/master/
egs/reverb/s5/RESULTS

3https://github.com/kaldi-asr/kaldi/blob/master/
egs/chime3/s5/local/run_dnn.sh

Table 2: WERs/% for all systems evaluated on the evaluation
data of the WSJ+VoiceHome dataset.

Offline Block-Online Online

2 ch 8 ch 2 ch 8 ch 2 ch 8 ch

Unprocessed 24.3

Iteration 18.7 17.2 - - - -
Smooth 20.3 18.6 20.8 19.5 20.9 20.0

DNN 19.1 18.0 20.3 18.7 20.0 19.4

results compared to the DNN-based one in the offline case.
Given that WPE itself omits noise in its formulation, this out-
come was not expected and might indicate that the training
target for the DNN (the direct speech PSD) can be improved
when noise is present.

6. CONCLUSIONS & OUTLOOK

In this paper, we show that the recursive WPE formulation
proposed in [6] can be improved with a more sophisticated
PSD estimator, resulting in a 5 % - 10 % reduction in WER
relative. The approach is computationally slightly more de-
manding and increases the latency by a few frames due to the
input window, but still operates on a frame-by-frame basis
and can thus be deployed in a real-time scenario. However,
we also find that simply smoothing the observation results
in surprisingly good performance, even if (directed) noise is
present. For future work, one question to be raised is if the
DNN based PSD estimator is trained in an optimal way. A
major concern here is the definition of the direct speech sig-
nal. While there are some reasonable arguments for the spe-
cific choice of the split between early reflections and the tail,
it remains unclear if that is the best choice for the task at hand.
In future work, we plan to investigate if we can train the DNN
based PSD estimator by directly minimizing the loss func-
tion of the acoustic model, i.e. backpropagate the gradients
of the cross-entropy (CE) loss all the way to the PSD estima-
tor to update its parameters. That way, we avoid to explicitly
specify what the direct signal is and also eliminate the need
for parallel training data. This might especially be beneficial
when noise is present.
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