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Abstract
It has been experimentally verified that sampling rate offsets
(SROs) between the input channels of an acoustic beamformer
have a detrimental effect on the achievable SNR gains. In this pa-
per we derive an analytic model to study the impact of SRO on the
estimation of the spatial noise covariance matrix used in MVDR
beamforming. It is shown that a perfect compensation of the SRO
is impossible if the noise covariance matrix is estimated by time
averaging, even if the SRO is perfectly known. The SRO should
therefore be compensated for prior to beamformer coefficient es-
timation. We present a novel scheme where SRO compensation
and beamforming closely interact, saving some computational ef-
fort compared to separate SRO adjustment followed by acoustic
beamforming.

1 Introduction
In multi-channel acoustic signal processing it is usually assumed
that the different channels are sampled synchronously, using the
same sampling clock for all channels. While this holds true for
microphone arrays which have a compact form factor, the as-
sumption is often violated in case of distributed acoustic sensor
nodes. A prominent example are Wireless Acoustic Sensor Net-
works (WASNs), which consist of spatially distributed devices
equipped with sensors (microphones or microphone arrays), pro-
cessing units and communication interfaces [1]. The spatial dis-
tribution of the sensors offers great opportunities for improved
signal acquisition and enhancement. However, again due to their
spatial distribution, the microphones will no longer share the
same sampling clock signal. Each sensor node usually has its
own crystal oscillator driving the sampling process. Even if these
oscillators run on the same nominal sampling frequency, there
will inevitably be frequency and phase differences between the
sampled signals at the different devices. These are due to imper-
fect hardware and environmental influences, such as temperature,
see, e.g., [2] for a discussion of the hardware issues involved.

If those signals recorded at the sensor nodes are combined for
multi-channel signal processing, such as acoustic beamforming,
the sampling rate offsets (SROs) lead to significant degradation
of the achievable performance. Several studies in the literature
report a significant drop in SNR gain from beamforming in the
presence of uncompensated SRO, see, e.g., [3–5]. The negative
effect of a SRO on adaptive echo cancellation is discussed in [6]
and on blind source separation in [7].

While these effects have been observed in experiments, ex-
isting literature is usually not concerned with the development of
an analytic model explaining the effect of SRO on, say, adaptive
beamforming. The works concentrate instead on how to blindly
estimate a SRO and how to realign the signals once an estimate
of the SRO has been found: In [8] a recursive band-limited in-
terpolation is proposed for SRO estimation, while a correlation
maximization approach is proposed in [9]. Others examine the
coherence function between pairs of input channels [3, 10].

Experiments on beamforming and SRO estimation were pub-
lished by Markovich et al. in [4] and by Cherkassky et al. in [5],
where for example the performance of an Minimum Variance
Distortionless Response (MVDR) beamformer in WASNs was
examined. To this end the authors modeled the non-zero SRO
in the frequency domain by a multiplication with a phase term,
according to the ideas in [11].

However, estimating the SRO is out of the scope of this pa-
per. We rather assume that this task has already been solved and
an estimate of the SRO is available. Instead of relying on exper-

imental evidence, the purpose of this paper is to offer an analytic
model to explain the impact of a SRO on adaptive beamform-
ing. To be specific, we consider a scenario with a desired and
and undesired signal, both modeled as a point source in a rever-
berant environment, and compute the impact of the SRO on the
estimation of the spatial noise covariance matrix. This matrix
is needed in many multi-channel signal processing tasks, such
as, e.g., for the computation of the beamformer coefficients of a
MVDR beamformer. This analysis shows that the effect of the
SRO on a covariance matrix estimated by time averaging cannot
be undone perfectly, even if the SRO were known. We conclude
that the SRO compensation has to be done prior to the beam-
former coefficient computation and the beamforming operation.
For this we offer an implementation where SRO compensation
and beamforming are closely coupled, saving some computation
compared to a separate SRO compensation by resampling fol-
lowed by acoustic beamforming.

The paper is organized as follows. The basic signal model is
described in Sec. 2, followed by a short introduction to MVDR
beamforming in Sec. 3. Sec. 4 presents a detailed analysis of the
spatial noise covariance matrix estimation in the presence of a
SRO. The new SRO aware MVDR beamformer is introduced in
Sec. 5. We continue with some experiments in Sec. 6 and sum-
marize our findings in Sec. 7.

2 Signal model
Let xi(t) denote the microphone signal at node i. It is sampled
with the sampling frequency fi. If there is a SRO between the
oscillators at nodes i and j, the sampling frequency at node j can
be expressed by

fj = (1+ εij) ·fi, (1)

where εij � 1 denotes the SRO between nodes i and j.
The N-point Short Time Fourier Transform (STFT) Xi(k, l)

of the l-th block (with block shift B) using a periodic Hann win-
dow w(n) is given by

Xi(k, l) =
N−1

∑
n=0

w(n) ·xi(n+ l ·B) · e−j 2π
N kn, (2)

where k denotes the frequency bin and the xi(n) are the time
domain samples of xi(t), sampled with frequency fi.

We assume a single target speech source signal s(t) and a
single coherent noise source v(t) at fixed positions in the room.
The corresponding signals at node i can be expressed in the STFT
domain as

Xi(k, l) =Hi(k, l) ·Si(k, l)+Gi(k, l) ·Vi(k, l)︸ ︷︷ ︸
=Ni(k,l)

. (3)

where H(k, l) and G(k, l) denote the corresponding acoustic
transfer functions. Note that all terms have an index i to indi-
cate that they are sampled with node i’s sampling frequency fi.
In contrast to the model in [10] we do not include spatially un-
correlated noise in the model to simplify the derivation, although
it will be included lateron in the simulations.

Now consider another sensor node j observing the same sig-
nals, however under the sampling frequency fj . Following [4]
and [11] the STFTs of the speech components are linked via a
phase term, which is due to the difference in sampling phase and
frequency:

Si(k, l)≈ Sj(k, l) · e−j 2π
N [τij+(N2 +lB)εij ]k, (4)



where the initial sampling phase offset is caused by τij , the dif-
ference in the recording start times at nodes i and j.

The SRO introduces a delay between the two streams which
increases/decreases over time and which is given by (N/2 +
lB)εij , according to (4). To shorten the notation we denote the
complex exponential caused by sampling phase and frequency
offset by

ξij(k, l) := e−j 2π
N [τij+(N2 +lB)εij ]k. (5)

Correspondingly, the noise source signal part can be described by

Vi(k, l)≈ Vj(k, l) · ξij(k, l). (6)

To summarize, a constant SRO leads to a linearly increasing or
decreasing time shift, which corresponds to a multiplication with
a complex exponential term in the STFT domain. This model has
been successfully used in a variety of publications, e.g., [3,9,11].
However, the model validity strongly depends on the SRO and
the STFT size, as has been discussed in [12].

3 MVDR beamforming
To study the influence of the SRO on beamforming we select
the widely used MVDR beamformer in its narrow-band formu-
lation. In the frequency domain the MVDR beamformer filter
coefficients are given by (see [13])

W (k, l) =
R−1(k, l) ·d(k,p)

dH(k,p) ·R−1(k, l) ·d(k,p)
. (7)

Here, d(k,p) denotes the steering vector, which we model in
this work to consist of phase-only terms, assuming anechoic sig-
nal transmission, to point the beamformer towards the desired
speaker at position p. Further, R(k, l) denotes the spatial corre-
lation matrix of the noise.

Applying the beamformer to the input signals results in the
output signal Y (k, l) with

Y (k, l) =WH(k, l) ·X(k, l), (8)

which is subsequently transformed back to the time domain to
synthesize the output signal.

Here we assume that speaker and node positions are known,
and thus that the steering vector d(k,ps) is known. However,
the noise correlation matrix R(k, l) will be estimated from the
sensor nodes’ signals. The impact of SROs between the nodes on
this estimation will be discussed next.

4 Noise correlation matrix estimation
At times where the desired source signal is absent, the noise
correlation matrix can be estimated from the recorded signals
Xi(k, l) =Ni(k, l), i= 1, . . . ,K, where K is the number of sen-
sor nodes. These signals are gathered in the vector N(k, l) =

[N1(k, l), . . . ,NK(k, l)]T .
For illustration purposes consider a sensor network withK =

3 nodes, which are denoted by h,i and j. From the instanta-
neous observation N(k, l) = [Nh(k, l),Ni(k, l),Nj(k, l)]

T we
can compute the dyade

R̃(k, l) =N(k, l) ·NH(k, l)

= |Vj(k, l)|2
[
Gh(k, l)ξhj(k, l)
Gi(k, l)ξij(k, l)

Gj(k, l)

][
Gh(k, l)ξhj(k, l)
Gi(k, l)ξij(k, l)

Gj(k, l)

]H

= |Vj(k, l)|2

 |Gh|2 GhG
∗
iξhjξ

∗
ij GhG

∗
jξhj

GiG
∗
hξ
∗
hjξij |Gi|2 GiG

∗
jξij

GjG
∗
hξ
∗
hj GjG

∗
iξ
∗
ij |Gj |2


k,l

,

(9)

where the notation [...]k,l means that all terms within the matrix
depend on k and l. The phase terms can be summarized which
we demonstrate for the product of ξhj and ξ∗ij :

ξhjξ
∗
ij = e−j 2π

N [τhj+(N2 +lB)εhi]ke+j 2π
N [τij+(N2 +lB)εij ]k (10)

= e−j 2π
N [τhj−τij+(N2 +lB)(εhj−εij)]k

≈ e−j 2π
N [τhi+(N2 +lB)(εhi)]k = ξhi. (11)

Here we used that τhj−τij = τhi and εhj−εij ≈ εhi. The latter
can be seen as follows

εhj − εij = (
fj
fh
−1)− (

fj
fi
−1) =

fj
fh
−
fj
fi

=

(
fi
fh
−1
)
fj
fi

= εhi
fj
fi
≈ εhi (12)

because fj/fi ≈ 1 since εij � 1.
Thus (9) can be rewritten as

R̃(k, l) =N(k, l) ·NH(k, l) =

= |Vj(k, l)|2 ·

 |Gh|2 GhG
∗
iξhi GhG

∗
jξhj

GiG
∗
hξ
∗
hi |Gi|2 GiG

∗
jξij

GjG
∗
hξ
∗
hj GjG

∗
iξ
∗
ij |Gj |2


k,l

(13)

= |Vj(k, l)|2 ·D(k, l)

 |Gh|2 GhG
∗
i GhG

∗
j

GiG
∗
h |Gi|2 GiG

∗
j

GjG
∗
h GjG

∗
i |Gj |2


k,l

DH(k, l).

The matrix D(k, l) reflects the SRO influence on the result with
node j acting as a reference node with

D(k, l) =

[
ξhj(k, l) 0 0

0 ξij(k, l) 0
0 0 1

]
. (14)

SinceD(k, l) is an unitary matrix the inverse is given by its Her-
mitian transpose and we can compute a SRO compensated dyade
by multiplying from the left and right side with DH(k, l) and
D(k, l), respectively. Thus the SRO compensated instantaneous
estimate ofR at the l-th block and k-th bin is given by:

R̂(k, l) =DH(k, l) ·N(k, l) ·NH(k, l) ·D(k, l). (15)

The estimates of the noise correlation matrix, R̃(k, l) or
R̂(k, l), based on a single time frame are, however, much too
noisy. Furthermore, they are of rank one and thus cannot be in-
verted, as is required in (7). Both issues can be solved by averag-
ing across L frames (if L is chosen large enough):

R(k) =
1
L

L−1

∑
l=0
N(k, l) ·NH(k, l). (16)

Here, we considered the uncompensated instantaneous estimate
R̃(k, l) to showcase the influence of the SRO on the correlation
matrix entries. To study the statistical properties of R(k) we
compute the expectation of the (h,i)-th entry

E
[
Rhi(k)

]
= E

[
1
L

L−1

∑
l=0

Gh(k, l)Vh(k, l)G
∗
i (k, l)V

∗
i (k, l)

]

=
1
L

L−1

∑
l=0

E
[
|Vh(k, l)|2Gh(k, l)G∗i (k, l)

]
︸ ︷︷ ︸

≈Rhi(k)

ξhi

=Rhi(k) ·
1
L

L−1

∑
l=0

e−j 2π
N (N2 +lB)εhik (17)

=Rhi(k) ·
1
L
· e−jπεhik · 1− e−j 2π

N BεhikL

1− e−j 2π
N Bεhik

(18)



where Rhi(k) is the correlation in absence of a SRO, and in (17)
we assumed τhi := 0 (zero initial phase offset).

Obviously, the SRO introduces a bias in the estimate of
Rhi(k). If εhi is known, the bias can be computed. Still the bias
cannot be removed perfectly because the sum of the harmonic ex-
ponentials can become zero. This will be studied in more detail
in the experimental section.

5 Leaping MVDR
In our model of the MVDR beamformer given in Section 3 the
steering vector consists of complex exponentials representing sig-
nal delays. However, delays larger than one sample will create
cyclic wrap around effects, if the delay is compensated by a mul-
tiplication with a phase term in the STFT domain, and therefore
cause signal artifacts. Additionally, the SRO compensation of the
microphone signals requires also signal delay compensations fol-
lowing (15). In this section we show how these two delay terms
can be jointly and efficiently handled.

Our idea is here to combine the SRO compensation and the
MVDR beamformer delays into an integrated processing block,
where the block shift of the analysis window is selected at each
processing time step individually, fitting the requirements of the
SRO compensation and the MVDR beamformer. Since this
individual block shift is not constant over all blocks we call
this beamformer ”Leaping Minimum Variance Distortionless Re-
sponse (L-MVDR)”.

Figure 1 depicts the block diagram of the L-MVDR. At first
each input channel is pre-processed by a STFT based SRO com-
pensation as explained in [12]. Here the h-th channel is shown
which employs the following input signals/data: Audio signal
xh(n), block index counter l, SRO εhj between h-th and refer-
ence channel j, and optimal Time Differences of Arrival (TDOA)

h-th

xold xnew

N−B−δ B+δ

X̂h(k, l) τ̃h(p)

d̃(k,p)

R̂−1(k) d̃(k,p)

d̃H(k,p) R̂−1(k) d̃(k,p)

Hann()
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τh
z−τh
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l τh(p)ǫhj

δ
ñh
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e−j 2π
N

kñh

e−j 2π
N

kτ̃ (p)

Figure 1: Block diagram of L-MVDR, shown is the h-th chan-
nel pre-processing for synchronization (gray box) and below the
multi-channel MVDR filter.

τh(p), which is a function of the positions of the sensor node h
and the speaker. The purpose of the shift tracking block is de-
scribed in Sec. 5.1 further below. After this preprocessing the
noise correlation matrix is estimated (block ”noise tracking”), the
beamformer coefficients are computed, and the input signal is fil-
tered. Then the time domain signal y(m) is reconstructed by an
overlap-add operation. Note that y(m) is a digital signal sampled
at the same sampling rate as the reference channel j.

5.1 Delay compensation
The MVDR steering vector d(k,p), which consists of delays, ac-
counts for TDOA of the target source signal at the microphones.
Additionally, delay compensation is required for removing the
SROs, which is, however, better known under the name ”resam-
pling”. In the following we describe how these delays are treated.

The main task of the shift tracker in Fig. 1 is to keep the
delays which are realized by phase shifts in the STFT domain
smaller than one sample in order to avoid cyclic wrap around
effects.

First consider the delay which is required for the SRO com-
pensation, according to the model in (4). This requires the track-
ing of the continuously increasing/decreasing delay nh(l), where

nh(l) = (1+ εhj) · (lB+B/2). (19)

This delay, representing the average delay between the h-th and
the j-th channel, due to the SRO εhj , is split into an integer part

nh(l) = b(1+ ε) · (lB+B/2)e, (20)

and a fractional part

ñh(l) = nh(l)− (1+ ε) · (lB+B/2), (21)

where be denotes rounding towards the next integer. The buffer
leap signal δ is triggered by the integer parts of nh(l)

δ(l) = (nh(l)−nh(l−1)) , (22)

while the fractional part ñh(l) is compensated for by a multipli-
cation with a complex exponential.

The second kind of delays, those required for the steering
vector, are also treated by the shift tracker. Consider the TDOA
τh(p) of node h. It is also split into an integer part τh(p) =
bτh(p)e and a fractional part τ̃h(p) = τh(p)− τh(p). A vari-
able delay (see Fig. 1, block z−τh ) takes care of τh(p) while
the fractional parts of all channels are summarized in the vec-
tor τ̃ (p) = [τ̃h(p), τ̃i(p), τ̃j(p)]

T and together form the latency
reduced steering vector d̃(p).

From experiments on the STFT resampling procedure (doc-
umented in [12]) we know that for a Fast Fourier Transform
(FFT) size of 1024 samples the precision of this STFT resam-
pling method used here is limited to a maximum of approximately
55dB Signal-to-Interpolation-Noise Ratio (SINR). Other resam-
pling methods, e.g., the Overlap-Save method (OSM) method
from [12], achieve better performance in terms of the SINR.
Hence, the L-MVDR precision observed here may be limited by
the precision of the resampling method which will be investigated
in the following experiments.

6 Experiments
We consider a room with distributed microphones, where each
microphone signal is sampled independently using oscillators
whose frequencies slightly differ. We assume presence of a single
target source (a speaker in the middle of the room) and a single
coherent noise source (in one of the corners) at fixed positions
in the room. The target speech source signal is taken from the
TIMIT corpus by concatenating recordings to utterances of 30 s
duration. All data was generated with the image method software
from [14] where we tried to select the parameters according to



the results from [15]. The simulated room had the dimensions
5m× 3m× 3m. We also added some uncorrelated sensor noise
at 20dB SNR on each channel to enhance the realism of the data.

Since our scenario assumes asynchronously sampled data we
artificially introduced SROs by resampling the signals (see [12]
for details) generated by the image method from [14].
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Figure 3: Estimation of matrix element R12, averaged across
150 experiments. Shown are the estimate (solid lines) and the
prediction following (18) (dashed lines) at an SRO of 50 ppm for
bins k = [20,40] (reverberation time T60 = 350ms).

6.1 Noise correlation matrix
To verify the result of (18), we generated 150 recordings of 60 s
duration using the image method as described above setting the
reverberation time to T60 = 350ms. Fig. 3 compares the estimate
R12(k) computed from the simulated signals with the theoretical
result of (18) for the bins k = 20 and k = 40. The SRO between
the nodes (1 and 2) was set to 50ppm.

The estimates (solid lines) follow the values predicted by (18)
(dashed lines) quite well. Note that the ground truth values were
fixed at |R12(k= 20)|= 1.68e+8 and |R12(k= 40)|= 7.09e+7.
The block shift B was set to half of the FFT size (N = 128),
which means the first zero of the functionR12(k= 40) is reached
at block index L = 1000. With a sampling rate of 16kHz this
corresponds to 4s after starting the system.

For values Lν = (ν · N)/(Bεhik), ν ∈ N the estimates
R̃hi(k) tend to be zero, as predicted by (18). The location of the
zeros thus depends on the frequency bin k. If the value is zero,
a multiplicative compensation of the bias is impossible. Only if
no zeros occur for any of the frequencies an exact bias compen-
sation is possible, i.e., only if l < 2/(Bεhi). These intermittent
zeros may also explain why the approach of [5] suffers so much
from local maxima during the optimization as described by the
authors. So a correct estimate of R(k) requires a SRO compen-
sation on the signals prior to time averaging.

6.2 Beamforming experiments
Table 1 summarizes the performance of the L-MVDR in terms
of SNR gain and compares it to combinations of MVDR beam-
former with the resampling methods STFT and OSM [12]. In
case of absence of clock synchronization the MVDR performance
degrades rapidly with increasing values of the SRO.

It can be seen that all explicit resampling methods and the
new L-MVDR achieve roughly the same SNR gains, which is
independent of the SRO. Comparing the execution times of the
plain MVDR with the other methods, it is obvious that the L-
MVDR is computationally more efficient than the variants with
an explicit resampling stage, with the STFT resampling coming
close, which is not surprising due to its similarity with the pro-
posed method. Furthermore, the results reveal that the difference
in precision of the tested resampling methods is so small that it
does not affect the SNR gain obtained by the beamformer.

Fig. 2 depicts the improvements of the L-MVDR over an
MVDR with uncompensated SRO in terms of the SNR gain
∆SNR (∆SNR = SNRL-MVDR - SNRMVDR). On the abscissa,
the SNR of the coherent noise source is varied between −5 dB
and 30 dB, while the sensor noise is fixed at 20 dB. MVDR and
L-MVDR achieve the same results, i.e., ∆ SNR = 0 for synchro-
nized data (εij = 0 ,∀i, j), while for SROs of 50 and 100ppm the
L-MVDR achieves several dB gain over the MVDR, which, how-
ever not surprisingly, diminishes as the reverberation time and the
SNR to the coherent noise source increase.

Table 1: Processing time per 1s of a 4-channel audio segment
and average SNR gain (T60 = 200ms, 10dB SNR coherent noise,
20dB SNR sensor noise)

SRO Avg. Time
Beamformer Sync. 0ppm ±50ppm ±100ppm [ms]

MVDR - 8.92 3.69 3.23 293.52
MVDR STFT 8.92 8.92 8.92 310.67
MVDR OSM 8.91 8.91 8.91 376.64

L-MVDR - 8.92 8.92 8.92 308.13

7 Summary
We have presented an analytical model to explain the effect of
SRO on the estimation of the spatial noise covariance matrix.
The theoretical results were confirmed by experimentation. Fur-
ther, we have presented the new L-MVDR beamformer, which is
a SRO aware narrowband MVDR beamformer operating in the
STFT domain. It has a reduced computational complexity com-
pared to separate resampling and beamforming components, and
the developed shift tracker reduces cyclic wrap around effects.
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