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Abstract
We present a block-online multi-channel front end for automatic
speech recognition in noisy and reverberated environments. It
is an online version of our earlier proposed neural network sup-
ported acoustic beamformer, whose coefficients are calculated
from noise and speech spatial covariance matrices which are es-
timated utilizing a neural mask estimator. However, the sparsity
of speech in the STFT domain causes problems for the initial
beamformer coefficients estimation in some frequency bins due
to lack of speech observations. We propose two methods to miti-
gate this issue. The first is to lower the frequency resolution of the
STFT, which comes with the additional advantage of a reduced
time window, thus lowering the latency introduced by block pro-
cessing. The second approach is to smooth beamforming coeffi-
cients along the frequency axis, thus exploiting their high inter-
frequency correlation. With both approaches the gap between
offline and block-online beamformer performance, as measured
by the word error rate achieved by a downstream speech recog-
nizer, is significantly reduced. Experiments are carried out on
two copora, representing noisy (CHiME-4) and noisy reverberant
(voiceHome) environments.
Index Terms— Distant speech recognition, acoustic beamform-

ing, time-frequency mask estimation

1. INTRODUCTION

With the advance of smart voice-controlled loudspeakers distant
Automatic Speech Recognition (ASR) has found widespread use
in the home environment. These devices employ microphone ar-
rays to capture sound, and it has been shown that acoustic beam-
forming techniques provide significant recognition rate improve-
ments compared to single-channel recognition. The state-of-the-
art in microphone array beamforming for ASR is to estimate
masks which indicate for each time frequency (TF) bin whether
it is dominated by speech or by distortions. The masks can be
either estimated by a generative model, such as a time-variant
complex Gaussian Mixture Model [1], or by a Neural Network
(NN) [2, 3]. With these masks the spatial covariance matrices
of speech and noise are estimated, and from these matrices, in
turn, the coefficients of statistically optimum beamformers, such
as the Multi-Channel Wiener Filter (MWF), the Minimum Vari-
ance Distortionless Response (MVDR), or the maximum-SNR,
also called Generalized Eigenvalue (GEV), beamformer are com-
puted. However, many of these popular speech enhancement
schemes do not offer the low-latency processing required for
voice-controlled devices.

Several recent works presented low-latency online mask
based beamformers [1, 4, 5, 6], however, with a noticeable hit
in recognition rate of a subsequent speech recognizer, compared
to the results achieved by a corresponding offline beamformer.
In this contribution we evaluate the differences between block-
online and offline neural network dependent beamforming to
identify sources of error. For two of them, which have signif-
icant impact on the Word Error Rate (WER), we propose solu-
tions, which considerably reduce the gap between block-online
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and offline recognition performance.
The first is concerned with the normalization of the data at the

input of the neural network. A recent study [6] compared nor-
malization methods in online mask estimation and showed that
the recursive estimation of mean and variance severely degrades
the beamforming results compared to estimating these statistical
moments offline on a whole utterance. We propose to waive vari-
ance normalization altogether, and carry out only recursive mean
normalization, which turns out to be a reasonable approach.

The second issue is related to the well-known sparsity of the
speech signal in the Short time Fourier Transform (STFT) do-
main. Many offline mask based beamformers use frequency do-
main representations with high frequency resolution to achieve
sparseness of speech, e.g., [3, 7, 8]. However, due to this sparsity
it may take a long time for some frequency bins until sufficiently
many observations of speech are observed to render the speech
spatial covariance matrix estimation reliable. As a consequence
beamforming on these frequencies performs poorly. We propose
to reduce the STFT window size and, correspondingly, the frame
advance, to solve this issue. Since the sparsity of speech, on the
other hand, is beneficial for some enhancement tasks we also of-
fer an alternative. To this end we exploit the strong correlation of
speech and most noises across frequency and propose to smooth
the beamformer coefficient vectors along the frequency axis.

We evaluate our modifications on two databases. The first
is the CHiME-4 dataset, which is characterized by low Signal
to Noise Ratios (SNRs), different noise types, and little rever-
beration [9]. The second is a database composed of Wallstreet
Journal (WSJ) utterances [10] which are convolved with Room
Impulse Responses (RIRs) of the voiceHome corpus, to which
typical household noises are added [11, 12]. This dataset repre-
sents the case of both strong additive and convolutive distortions.

This paper is structured as follows. In the next section we
give an overview of the neural network supported acoustic beam-
former. Then we discuss online mask estimation in Section 3,
followed by block-online beamformer coefficient estimation in
Sec. 4, where we discuss different frequency domain represen-
tations and propose a frequency smoothing scheme. Section 5
presents speech recognition results, and Section 6 offers some
conclusions.

2. SYSTEM OVERVIEW

Fig. 1 displays the structure of the neural network supported
acoustic beamformer, which we proposed in [2, 3]. In the fol-
lowing we briefly describe the system.

We assume a multi-channel frequency domain input
Y(`,k) = [Y1, Y2, ..., YD]T consisting ofD microphone signals:

Yd(`,k) =Hd(k)S(`,k)+Nd(`,k)

=Xd(`,k)+Nd(`,k), d= 1, . . . ,D. (1)

Here, S(`,k),Hd(k),Xd(`,k) andNd(`,k) are the STFT coeffi-
cients of the source signal, of the Room Impulse Response (RIR)
from the source to the d-th microphone, and the source signal and
the noise as observed by the d-th microphone, at time frame in-
dex ` and frequency bin index k. In the following these indices
will be dropped wherever possible without sacrificing clarity.
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Fig. 1: System overview of mask based beamforming

A NN is applied to the magnitude spectrum of each mi-
crophone signal to predict which TF bin is dominated by clean
speech and which by distortions, however the weights and biases
of the D networks are tied across channels. The D estimated
masks Mν are reduced to one mask by applying the median op-
erator with ν ∈ [X,N ]. Next the the spatial covariance matrices
of speech and noise, ΦXX and ΦNN, are estimated from the TF
bins dominated by speech and noise, respectively.

The beamformer coefficient vector is computed from them
using the well-known Minimum Variance Distortionless Re-
sponse (MVDR) criterion, which minimizes the noise energy
with a distortionless constraint on the target signal [13]:

FMVDR = argmin
F

FH
ΦNNF s.t. FHH̃= 1, (2)

where H̃= [1, ...H̃D]T is the vector of relative transfer functions,
i.e. the acoustic transfer functions normalized to a reference mi-
crophone (here mic. #1). The solution to this optimization prob-
lem can be written in the form [14]:

FMVDR =
Φ
−1
NNΦXX

tr
{

Φ
−1
NNΦXX

}u, (3)

where u is a unit vector pointing to the reference microphone,
and tr{·} is the trace operator.

Finally the beamformer is applied to the input signal

Z(`,k) =FH(k)Y(`,k) (4)

to obtain Z, which is an estimate of the source signal as received
at the reference microphone. Here, (·)H denotes the Hermitian
transpose.

3. ONLINE NEURAL MASK ESTIMATION

The original topology of the neural mask estimator [3] is slightly
changed to enable online processing. The initial bidirectional
LSTM layer with 256 nodes is replaced by a unidirectional causal
LSTM layer of twice the number of nodes. The following three
feedforward layers remain, however, unmodified.

To further account for online processing, the normalization
of the input to the network is modified. In the offline scenario
a normalization to zero mean and unit variance is carried out,
where these statistical moments are estimated on a whole utter-
ance. Changing this to a recursive mean and variance normaliza-
tion as proposed in earlier works [6] leads to a significant per-
formance drop. The likely cause is the poor variance estimate,
since it is well-known that variance estimates are much noisier
than mean estimates.

We therefore removed variance normalization completely
and only carried out a recursive mean normalization. This will
obviously only work if the training and test data have approxi-
mately the same power. In case that there is a significant mis-
match in the power of the signals, a scale factor needs to be esti-
mated in advance (and then kept fixed). For the databases tested
in this contribution, this, however, was not necessary.

4. BLOCK-ONLINE SPATIAL COVARIANCE AND
BEAMFORMER COEFFICIENT ESTIMATION

To accommodate for low latency, both ΦXX and ΦNN are esti-
mated recursively in a block-online fashion:

Φνν(nN) = ανΦνν((n−1)N)+(1−αν)Φ̂νν(nN) (5)

Φ̂νν(nN) =
N−1

∑
`=0

Mν(nN + `)Y(nN + `)YH(nN + `) (6)

Here Mν is the mask estimator output, ν ∈ [X,N], N the block
size and αν a forgetting factor. Given these matrices the beam-
former coefficients are updated according to (3) every N frames.
Note that these computations are carried out for each frequency
bin independently.

Due to the sparseness of speech in the STFT domain, it may
take some time after a speech onset until speech energy is ob-
served in a certain frequency bin. Figure 2 shows the histogram
of the time it takes until the first speech dominated frame is ob-
served. Time measurement starts when the first speech domi-
nated frame is observed anywhere on the frequency axis. The
histogram is the average over all frequencies and all utterances in
the CHiME-4 simulated development set. Here, the STFT size
was chosen to be equal to the frame width, and the STFT frame
advance is one quarter of the STFT size.
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Fig. 2: Histograms of length of the time interval between the first
speech dominated frame anywhere on the frequency axis and the
first speech dominated frame in a given frequency, averaged over
frequencies and utterances of the CHiME-4 simulated develop-
ment set. Histograms are given for different STFT sizes.

From the histogram we conclude that frequencies without ini-
tial speech observations are a common issue. As a consequence
the initial estimates of the spatial covariance matrix of speech are
very unreliable, thus leading to poor beamformer coefficient esti-
mates on these frequencies.

4.1. STFT Size

The histograms shown in Fig. 2 point to a possible solution: re-
ducing the STFT size and thus the frequency resolution, alle-
viates the problem of missing speech observations to some ex-
tent. While the median of the histogram for STFT size of 1024
(= 64ms) is at 0.174s, it is reduced to 0.151s and 0.145s for
sizes of 512 and 256. In our setup we use a fixed ratio of four be-
tween the STFT size and the frame advance. Thus, reducing the
STFT size also results in more frames per second and thus more
observations overall.



Further, since we choose the STFT window to be equal to the
STFT size (i.e., no zero padding), the latency introduced by the
block processing of the STFT is also reduced.

4.2. Frequency Smoothing

In [15] it has been observed that sparseness of speech is most
prominent for a STFT size of 64ms. The sparseness property, i.e.,
the fact that the speech energy is concentrated in a few frequency
bins, is exploited in many signal processing algorithms, such as
in mask-based blind source separation, e.g. [16], or in Minimum
Statistics based noise tracking [17], to name just two examples.

However, the reduction of the frequency resolution impacts
this sparseness property negatively. Furthermore there may be
other constraints which prohibit to modify a given STFT size. We
therefore propose an alternative to lowering the STFT size. The
idea is to exploit the correlation of speech on the frequency axis,
i.e. to estimate parameters at a certain frequency by using in-
formation from neighboring frequencies. We experimented with
smoothing different variables across frequency, such as the spa-
tial covariance matrix of speech or its principal eigenvector, but
finally settled on smoothing the beamforming vectors themselves
with a decaying window, since this gave the best results.

Fig. 3 displays the magnitude of a variable describing the
normalized cross correlation:

ρF(∆k) =
FH(k+∆k)F(k)−FH(k+∆k) ·F(k)√∥∥∥F(k+∆k)−F(k+∆k)

∥∥∥2
·
∥∥∥F(k)−F(k)

∥∥∥2

(7)

between the beamforming vectors at neighboring frequencies, for
a selected number of frequencies. Here (·) denotes time averag-
ing. A relatively high correlation can be observed, and it is only
mildly dependent on the frequency.
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Fig. 3: ρF of beamforming coefficients over frequency lag ∆k for
multiple frequencies describing the normalized cross correlation
for MVDR beamformer coefficients, which had been computed
offline over a whole utterance with STFT size of 1024.

This correlation can be exploited by smoothing the beam-
former coefficient vectors along the frequency axis. However,
beamformer coefficients estimated on frequencies with sufficient
observations of speech dominated frames are more reliable than
those computed on frequencies with fewer observations. This can
be accounted for by employing the speech masks in the smooth-
ing:

F̃(`,k) =
∑
bκ2 c
i=−bκ2 c

M̃X(`,k+ i)F(`,k+ i)

∑
bκ2 c
i=−bκ2 c

M̃X(`,k+ i)
, (8)

where M̃X = (`,k) = ∑
`
ι=0MX(ι,k) represents the cumulative

sum over all seen MX(i,k) up to frame `.

5. EXPERIMENTAL RESULTS

5.1. Datasets

The proposed modifications were tested by carrying out speech
recognition experiments on two databases.

The CHiME-4 task features real and simulated 6-channel au-
dio data of prompts taken from the WSJ0 5k Corpus [10] with 4
different types of real-world background noise (pedestrian, cafe,
street, bus) [9]. The amount of reverberation is negligible. The
evaluation set consists of both simulated test data (simu) and real
recordings of speech in noisy environments (real).

As a second dataset we used WSJ utterances (test eval92
5k) which are convolved with voiceHome RIRs and voiceHome
background noise [16], similar to the setup proposed by Bertin
et al. [11, 12]. The reverberation times are in the range of 395 -
585 ms. It is worth mentioning that the RIRs had been recorded
in three different houses, such that training, cross-validation and
test can use disjoint RIRs to ensure generalization. The voice-
Home background noise is very dynamic and typically found in
households, e.g., vacuum cleaner, dish washing or interviews on
television. Compared to the original setup of [11] we reduced the
SNR and set it to values randomly drawn between 0dB and 10dB
to simulate a more challenging environment.

The training targets of the neural mask estimator were ad-
justed to account for the two types of distortion, noise and re-
verberation, present on this task: while the target for the speech
mask estimation is chosen to be the direct (line-of-sight) signal
and early reflections, the target for the noise masks consists of
the noise and the speech convolved with the tail of the RIRs (i.e.,
the late reverberation), see [18] for details.

For both datasets, the user position can be considered station-
ary for the duration of an utterance. Thus beamforming, where
the coefficients are computed offline on the whole utterance, can
be considered the best solution if low latency is not an issue.

5.2. Backend

As ASR back end we use a Wide Residual Network as proposed
in [19] with logarithmic mel filterbank features and two Long-
Short-Term-Memory (LSTM) layers serving as accoustic model.
It consists of several convolutional layers with residual connec-
tions, followed by two BLSTM layers and two linear layers. The
hyper-parameters were adapted from [19]. The neural acoustic
models are trained on the respective training set of the consid-
ered corpora. Note that the acoustic model itself operates offline
since we focus on the online processing in the front-end but can
be replaced by an online version to achieve a fully online oper-
ating system. Decoding was carried out with the KALDI toolkit
[20] using a trigram language model without rescoring.

5.3. Input Normalization

Table 1 compares different input normalization methods w.r.t. the
achieved word error rates of the ASR decoder on the CHiME-4
dataset. The first entry shows the performance achieved using
the offline mask estimator using a bi-directional LSTM layer as
the recurrent layer in the network, and carrying out mean and
variance estimation on the whole utterance (offline utt.).

Replacing the BLSTM layer with a LSTM layer of twice
the size hardly affects the recognition results. The entry named
”fixed” refers to using the statistical moments estimated during
training, as inspired by [21], while ”rec. mean + var” is the re-
cursive mean and variance estimation per utterance used in [6]. It
results in a significant hit in recognition accuracy. The proposed
recursive estimation of only the mean results in error rates which
come close to the offline utterance-wise normalization. For all
following results with online mask estimation the recursive mean
normalization is used.



Table 1: WER on CHiME-4 for different mask estimators with
offline beamforming.

Recurrent Layer Normalization WER [%]
simu real

BLSTM offline utt. 8.39 10.01

LSTM

offline utt. 8.41 10.17
fixed 8.50 11.51

rec. mean + var 10.04 14.50
rec. mean 8.40 11.18

5.4. STFT Size

Next we investigate the impact of the STFT size on the beam-
former. For every STFT size a new mask estimator was trained,
with the above described topology, except for the input and out-
put layers which were adjusted accordingly.

To clarify the difficulties in online beamforming vector esti-
mation for high frequency resolution, Figure 4 depicts the Cosine
Distance (CD)

CD(`,k) = 1− Foff(k) ·FH
on(`,k)

||Foff(k)|| · ||Fon(`,k)||
(9)

between block-online and offline beamforming vectors for STFT-
sizes of 1024 and 256, averaged over the CHiME-4 development
dataset. For this and all experiments with block-online beam-
forming the block size N , see eq. (5), was set to correspond to
80ms and the forgetting factor αν to 0.95.
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Fig. 4: Cosine distance between offline and block-online beam-
former for STFT-size 256 (left) and 1024 (right) over time since
the start of the first speech observation in the utterance and over
frequency.

The figure clearly shows that the beamforming vector com-
puted with lower STFT-size much quicker approaches the offline
vector. One can also notice that for some frequencies it takes a
long time until a vector similar to the offline case can be esti-
mated, which is, however, less pronounced for the small STFT
size than for the large.

Table 2: WER in % on CHiME-4 for different STFT sizes.

Method STFT size WER
simu real

channel #5 – 13.36 18.60

Offline 1024 8.39 10.01
256 8.05 10.22

Online

1024 9.37 13.32
512 8.70 12.66
256 8.54 11.71
128 9.57 12.14

Table 2 shows the impact of the STFT size on the pre-
sented speech enhancement system. While offline beamforming
is hardly affected, the results clearly demonstrate the benefit of
reduced STFT size on block-online beamforming. Only if the
STFT size and thus the frequency resolution is too low (here at
size of 128) the error rate increases again.

5.5. Frequency Smoothing

Additonally, we experimented with the proposed frequency
smoothing of the beamforming vector. Table 3 presents ASR re-
sults on the CHiME-4 corpus. In the online case the ASR results
for STFT size 1024 with smoothing almost reach the results ob-
tained with the STFT size of 256 while the offline result scarcely
changes. The contributions of the neighboring frames within the
smoothing window were weighted as described in eq. (8) and its
size was set to κ= 5 neighboring frequency bins. We also exper-
imented with increasing the size with frequency, which, however,
did not improve performance. The best block-online results are
achieved by the beamformer calculated on STFT size of 256 with
a WER of 11.71% on CHiME-4 real test data.

Table 3: WER on CHiME-4 for different beamformers.

Method STFT size Smoothing WER [%]
simu real

Offline 1024 – 8.39 10.01
1024 ! 8.39 10.11

Online

1024 – 9.37 13.32
256 – 8.54 11.71
1024 ! 8.70 12.01

5.6. voiceHome

Finally, Table 4 presents results on the voiceHome dataset with
the best configuration found on CHiME-4. On the voiceHome
database the offline beamformer achieves a WER of 13.30% and
the block-online beamformer 17.70% at STFT size 1024. The er-
ror rates are given separately for the subset of test sentences cor-
rupted by speech-like noises (TV, Dialog, etc.) and other noises.
We can observe that the reduction of STFT size is counterpro-
ductive for the performance on the speech-like noises. This is
probably because the sparseness of speech, or more precisely, the
w-disjoint orthogonality [15] is lost: desired speech and interfer-
ing speech overlap each other even at the TF bin resolution. The
frequency smoothing method, however, leads to improved error
rate also for the subset of the database corrupted by speech-like
noise, indicating that the sparseness of speech is better preserved
and speech and speech-like noises do not overlap so much in in-
dividual frequency bins.

Table 4: WER in % on voiceHome eval dataset for different
beamformers.

Method STFT size Smooth. noise
all other sp-like

ch #1 – – 25.73 18.42 28.30
Offline 1024 – 13.30 12.70 13.52

Online
1024 – 17.70 17.01 17.94
256 – 17.96 16.85 18.36

1024 ! 16.85 15.10 17.47

6. CONCLUSIONS

We identified the initial lack of speech observations in some fre-
quency bins as source of degradation when going from offline
to block-online mask-based beamforming and proposed two so-
lutions to overcome this issue. The first is a reduction of the
STFT size, which, however, compromises the sparseness and w-
disjoint orthogonality of speech. The second is the smoothing of
the beamforming vectors along the frequency axis. Both meth-
ods lead to a reduction of the gap in ASR performance between
offline and block-online beamforming, as observed on two chal-
lenging ASR tasks.
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