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Abstract
This paper describes the systems for the single-array track and
the multiple-array track of the 5th CHiME Challenge. The fi-
nal system is a combination of multiple systems, using Confu-
sion Network Combination (CNC). The different systems pre-
sented here are utilizing different front-ends and training sets for
a Bidirectional Long Short-Term Memory (BLSTM) Acoustic
Model (AM). The front-end was replaced by enhancements pro-
vided by Paderborn University [1]. The back-end has been im-
plemented using RASR [2] and RETURNN [3]. Additionally, a
system combination including the hypothesis word graphs from
the system of the submission [1] has been performed, which
results in the final best system.

1. Background
This contribution presents a system combination approach for
the single-array track and the multiple-array track of the 5th
CHiME Challenge. In contrast to the provided baseline sys-
tem [4] the back-end has been replaced completely and is de-
scribed in Section 2.2. Furthermore, additional systems us-
ing different front-ends have been developed. The front-ends
are described in Section 2.1. All results presented here were
achieved using the official training set and along the rules of the
challenge [4].

2. Contributions
Our contributions build on the single-channel and multichannel
enhancement front-end provided by Paderborn University [1].
Only the acoustic model is modified and extended with system
combination. No rescoring techniques are used and all systems
are trained and evaluated using the baseline lexicon and 3-gram
language model.

2.1. Front-ends
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Figure 1: Front-end with all components

In addition to the baseline front-end (BL), another front-end has
been provided by the team from Paderborn University [1]. The

front-end system has a modular layout with several parts which
are described in detail in [1].

2.1.1. Dereverbaration

For dereverbaration the weighted prediction error (WPE) [5]
method was employed.

2.1.2. Guided source separation (GSS)

To separate the different sources we applied the complex Angu-
lar Central Gaussian Mixture Model (cACGMM) [6]. To avoid
the permutation problem and to ease the estimation of the model
parameters, we exploited the time annotations provided by the
challenge organizers, which indicates when a particular speaker
is active. These source activity patterns guide the estimation
of the mixture model parameters and avoid the need to solve
the frequency permutation and the global speaker permutation
problem. Furthermore, it renders the estimation of the number
of active sources unnecessary.

To cleanup the in-ear data we applied the GSS twice, global
and utterance-wise GSS. In the first run a complete session is
considered as a whole, i.e., one set of coefficients is estimated
using the Expectation Maximization (EM) algorithm. This, of
course, cannot account for speaker movements during the ses-
sion. Therefore we ran a second utterance-wise GSS, using the
parameters obtained in the first run as initialization. For array
data no initialization on the session is possible therefore we used
utterance-wise enhancement. When using an additional noise
mask we prevented the permutation problem by adding left and
right temporal context to the utterance. Thereby, introducing
time slots with silence for the target speaker, which allows the
algorithm to distinguish between target speaker and noise.

2.1.3. Beamforming and masking

Masks estimated from the GSS output, are used for beam-
forming and/or mask-based source extraction. As beam-
former we employed the Minimum Variance Distortionless Re-
sponse (MVDR) beamformer with Blind Analytic Normaliza-
tion (BAN) [7, 8, 9]. The same setup is used for both the single
array and the multiple array track, the only difference being that
the number of input channels is increased from 4 to 24 in the
multiple array track. An overview can be seen in Table 1.

2.2. Back-end

The Kaldi based back-end has been replaced with our own back-
end using RASR [2] and RETURNN [3].



Table 1: Overview on available front-ends.

Name Track BF Context WPE GSS Mask

F0 in-ear no ± infs no 4 class yes
F1 single yes ±15s yes 5 class no
F2 yes
F3 4 class
F4 multi 5 class no
F5 yes

2.2.1. Silence normalization

To reduce the amount of silence in the training and testing data,
utterance wise Bi-Gaussian modeling for speech frame selec-
tion is employed [10, 11]. In this method, first, the log-energies
of each frame of an utterance are computed. Then the distri-
bution of log-energy coefficients is estimated using a Gaussian
Mixture Model (GMM) of two mixtures. The cluster corre-
sponding to smaller value of center is treated as noise or non-
speech class, and the cluster corresponding to larger value of
center is considered as speech. A threshold is computed to de-
termine the decision making boundary between speech and non-
speech class. Usually, it is chosen as the point between the two
centers where the probabilities are equal. Then larger blocks of
non-speech audio frames are discarded such that the speech to
silence ration is approximately 0.9.

2.2.2. Data filtering

In contrast to the baseline, the transcriptions are not filtered, but
utterances are algorithmically selected. Two methods for filter-
ing out noisy utterances are evaluated. First, a GMM is trained
on the in-ear data. Then a search word graph is computed based
on the GMM and word based confidence scores are computed
using forward-backward algorithm. Only utterances where the
words of the reference transcription have a confidence score
above a certain threshold are selected. In the second method,
framewise state alignments are calculated for each utterance and
then sorted by their average maximum likelihood score. Then
a percentile of segments with a lower score are discarded. On
the one hand, both methods are similar in the sense, that they
tend to favor shorter utterances. On the other hand they vary in
their selection of utterances. If they are tuned to discard 50%
of the array dataset, their selection only overlaps in 50% of the
remaining utterances.

2.2.3. Acoustic model

The acoustic model is trained in the established hybrid model
fashion. In a first step a linear alignment is used to start a
mono-phone Hidden Markov Model (HMM) training on 16-
dimensional Mel Frequency Cepstral Coefficients (MFCC) with
first and second order derivatives as well as energy features. The
mixture components are split twice before the training data is re-
aligned using the mono-phone model. This procedure is iterated
20 times. In contrast to Kaldi, the transition probabilities are
not learned from training data, but one set is selected by hand
and applied to all HMMs. Another difference is the choice of
covariance modeling. The HMM-GMM systems in RASR are
trained with dense pooled covariance matrices.

In a second step, a state-tied triphone HMM-GMM model
is trained. The states are tied using a phonetic decision tree,
which optimizes the log-likelihood, where the log-likelihood

for a class is modeled by a single Gaussian with a diagonal co-
variance matrix. The mixtures are again split two times between
16 iterations of realignments. Based on the triphone system the
data is filtered as described in section 2.2.2. Based on the fil-
tered data, the state-tying is repeated and a second HMM-GMM
model is trained.

In the third step, hybrid acoustic models based on BLSTM
neural networks are trained. The topology consists of six
fully connected BLSTM layers with 600 cells each for the
forward and the backward direction which are combined af-
ter every layer. For regularization several methods are em-
ployed: dropout [12], L2 regularization, gradient noise [13],
focal loss [14]. Adam [15] with Nesterov momentum is used
for optimization. In addition learning rate scheduling is done
as described in [16]. The Deep Neural Network (DNN) models
are trained with 40-dimensional Mel frequency cepstral coef-
ficients as input features and 4500 clustered triphone states as
targets. In contrast to the baseline neither fMLLR, i-vectors nor
sequence discriminative training is used.

3. Experimental evaluation
In this chapter we will first describe the progression of our sys-
tem throughout the challenge, discussing the importance of dif-
ferent parameters. Afterward in sections 3.2 and 3.3 we evalu-
ate our best single systems and go into detail about the system
combination.

3.1. Finding a baseline

During the process of building a baseline system, it became ap-
parent that several parts of our pipeline had to be reevaluated.
The first intuition was replicating the Kaldi HMM-GMM base-
line. We used the same segment lists as the baseline but our
models did not converge in any meaningful way, staying at a
word error rate around 100%. The convergence behavior im-
proved when we switched from to original in-ear data to en-
hanced in-ear data F0 resulting in about 75% word error rate
on the in-ear data which was still about 10% absolute worse
than the Kaldi baseline GMM evaluated on the same set of in-
ear data. At this point, we looked into optimizing the dimen-
sion of the state-tying tree (CART) as well as the linear dis-
criminant analysis (LDA) dimension for constrained Maximum
Likelihood Linear Regression (CMLLR). Their influence can
be seen in tables 3 and 4, respectively.

Table 3: WER (%) for different state-tying tree dimensions of
HMM-GMM systems trained and evaluated on enhanced in-ear
data.

CART Dimension 2000 3000 4000 5000

WER 73.8 72.0 71.3 71.6

Table 4: WER (%) for different LDA dimensions of HMM-GMM
systems trained and evaluated on enhanced in-ear data.

LDA Dimension 50 60 70 80

WER 73.2 73.0 71.8 74.6

Besides CART and LDA dimension we also had to double
the number of splits performed during training to reach con-



Table 2: Overview of the acoustic models used for system combination. The duration given is without any augmentation applied. The
speed pertubation method inflates the data threefold.

Name Implementation Topology Training data Augmentation Filtering
in-ear [hours] array [hours]

BL Kaldi TDNN unprocessed (80) unprocessed (32) speed transcription
B1 RASR/ BLSTM enhanced (76) unprocessed (35) — alginment
B2 RETURNN enhanced (76) enhanced (40) confidence

vergence of the GMM-HMM. We have also observed that the
model classified about 40% of all training frames as silence.
This lead to a high prevalence of silence during recognition. We
tried tuning the time distortion penalties to suppress silence. But
this had no effect on the word error rate. Taking these consid-
erations into account, we introduced silence normalization and
utterance filtering into the system, reducing the GMM-HMM to
65% word error rate on the enhanced in-ear dataset F0.

Table 5: WER (%) for CMLLR adaptation applied on GMM and
BLSTM acoustic models on the F0 dataset.

Model Adaptation WER (%)

GMM None 73.4
GMM CMLLR 65.6

BLSTM None 48.3
BLSTM CMLLR 49.5

During training of the first neural acoustic models, we observed
that gains obtained by constrained maximum likelihood trans-
formation did not carry over to the neural networks. As can be
seen in Table 5, while CMLLR improves performance consid-
erably for the GMM it even had a slightly negative impact on
BLSTM performance. Therefore it was omitted for the BLSTM
models. To validate the topology of the BLSTM model, the
layer width and depth were optimized independently. As can be
seen in Table 6, small variations in dimension of the layers has
no impact on the performance of the BLSTM models. For our
hyperparameter configuration, a depth of 6 layers seems to be
optimal (Table 7).

Table 6: WER (%) for different layer dimensions of the BLSTM
systems trained on a mixture of enhanced in-ear and array data
and evaluated on enhanced in-ear data.

Layer width 400 500 600 800

WER 52.6 52.4 52.4 52.4

Table 7: WER (%) for different layer dimensions of the BLSTM
systems trained on a mixture of enhanced in-ear and array data
and evaluated on enhanced in-ear data.

Layer depth 5 6 7 8

WER 51.3 50.4 51.4 51.5

3.2. Single Systems

We compare three systems for system combination. The com-
bination of training data and filtering can be seen in Table 2.

Beside the provided baseline system BL, we evaluate BLSTM
systems, which are trained on partly different data. All systems
are evaluated on all front-ends introduced in Table 1. The results
of each system evaluated on the different front-ends can be seen
in Table 8. While system B2 performs worse on the baseline
front-end it is able to outperform the baseline time delay neu-
ral networks (TDNN) on the enhanced front-ends. System B1
is consistently worse than the baseline system, but it provides
improvements in system combination.

Table 8: Comparison of word error rate (WER) in % between
the investigated back-ends and front-ends.

Track Front-end Back-end
BL B1 B2

Single
BL 81.7 86.8 87.7
F1 74.0 79.2 73.4
F3 70.8 75.4 68.4

Multiple F4 67.9 69.2 60.7
F5 62.5 65.6 61.6

3.3. System combination

The system combinations are done by confusion network com-
bination (CNC) as described in [17]. For system combination,
all combinations of front-end and back-end were decoded sepa-
rately and a hypothesis word graph was created for each combi-
nation. Each word graph was converted to a confusion network
(CN) and aligned to the CN of the best performing system. To
determine the set of systems which should be combined for op-
timal performance a greedy search procedure was employed.

Table 9: Overall WER (%) for the single track system combi-
nation tested on the development set. Each row represents a
(n+1)-way combination of the previous best combination and
all remaining systems.

System 2-way 3-way 4-way 5-way

+ F1–B2 66.7 64.2 - -
+ F2–B2 64.9 - - -
+ F1–B1 66.5 64.5 63.8 -
+ F2–B1 66.5 65.6 64.8 64.8
+ F1–BL 65.6 65.0 64.5 64.8
+ F2–BL 66.2 65.3 65.0 64.7
+ F3–BL 66.6 65.7 64.9 64.9

First the best single system is combined with every other sys-
tem individually and combination weights are tuned. Then the
best combination is chosen and again combined with all other
systems to find the best 3-way combination. This procedure is
iterated until no further gains could be achieved.



Table 10: Overall WER (%) for the multi track system combi-
nation tested on the development set. Each row represents a
(n+1)-way combination of the previous best combination and
all remaining systems.

System 2-way 3-way 4-way

+F5–B2 56.1 - -
+F4–B1 58.0 56.5 56.2
+F5–B1 57.9 56.4 56.2
+F4–BL 57.7 54.6 -
+F5–BL 56.9 55.8 55.9

Table 11: Results of the best system combination. WER (%) per
session and location together with the overall WER.

Track Session Kitchen Dining Living Overall

Single
Dev S02 74.88 63.13 56.17

63.76S09 63.52 66.09 59.92

Eval S01 79.03 56.55 71.97 62.72S21 69.80 49.78 56.14

Multiple
Dev S02 61.95 58.80 49.30

54.56S09 51.74 53.76 52.29

Eval S01 70.31 46.89 61.07
55.26S21 65.51 46.57 49.36

The results for system combination for single and multi array
track can be seen in Table 9 and Table 10 respectively. We can
observe reductions in word error rate of 7% and 10% for the
single and multiple array tracks. Detailed results of the best
system combination are listed in Table 11.

4. Conclusion
The 5th iteration of the CHiME Challenge proves to be a chal-
lenging task which necessitates many customized steps in addi-
tion to our usual speech recognition pipeline. Great improve-
ments could be achieved by replacing and extending the acous-
tic preprocessing pipeline. Noise reduction in the front-end was
essential for convergence of the acoustic model training. Im-
provements from noise reduction far outweigh any system mis-
match, as the training and evaluation data sets have been pro-
cessed differently. But even then, bootstrapping an initial sys-
tem is a nontrivial task and requires elaborate filtering and nor-
malization of the available training data.

System combination using confusion networks helped to
further boost the performance. Here combinations from dif-
ferent front-ends led to higher improvements than varying only
the back-end. We still need to investigate if earlier fusion of the
feature streams provide similar benefits. In the end a relative
reduction of word error rate of 33% compared to the baseline
could be achieved.
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