

Communications Engineering

Full Bayesian Hidden Markov Model Variational Autoencoder for Acoustic Unit Discovery

Thomas Glarner, Patrick Hanebrink, Janek Ebbers, Reinhold Haeb-Umbach

Acoustic Unit Discovery

Segment speech into resonable (phone-like) acoustic units (AUs) and simultaneously learn set of AUs $% \left(AUs\right) =0$

Hidden Markov Model Variational Autoencoder

Standard VAE

Hidden Markov Model Variational Autoencoder

HMM-VAE

Drawbacks of HMM-VAE

- Number of AUs fixed up-front
- Maximum Likelihood for latent model: regularization issues

Proposed Changes

- Model should learn number of necessary AUs itself
- \rightarrow Model number of HMMs/AUs with categorical distribution and Dirichlet process (DP) prior
 - Place conjugate priors over all latent model parameters

• Approximate DP with finite symmetric Dirichlet distribution (truncate at *U*=100)

• Approximate DP with finite symmetric Dirichlet distribution (truncate at *U*=100)

 Approximate DP with finite symmetric Dirichlet distribution (truncate at U=100)

• Approximate DP with finite symmetric Dirichlet distribution (truncate at *U*=100)

Cost Function: Evidence Lower Bound (ELBO)

Insight: Decompose into three distinct terms:

$$\mathcal{L} = \mathbb{E}_{q(\mathbf{X};\phi)} \left[\log p(\mathbf{Y}|\mathbf{X};\delta) \right] + \mathrm{H}(q(\mathbf{X};\phi)) \\ + \mathbb{E}_{q(\mathbf{X};\phi)} \left[\underbrace{\mathbb{E}_{q(\mathbf{Z},\mathbf{C},\Omega;\lambda)} \left[\log \frac{p(\mathbf{X},\mathbf{Z},\mathbf{C},\Omega;\lambda_0)}{q(\mathbf{Z},\mathbf{C},\Omega;\lambda)} \right]}_{\mathrm{FL} = 0.5 \text{ f. Burging DD JIMM with "submatrixs"}} \right]$$

ELBO of Bayesian DP-HMM with "observations" X

Consequences

- Decoder NN training needs first term (minibatch SGD)
- Encoder NN training needs all three terms (minibatch SGD)
- Latent model training needs third term (Stochastic Variational Inference (SVI))

Synthetic pinwheel dataset, Bayesian GMM-VAE used as illustration

 $\mathsf{Epoch}\ 1$

Synthetic pinwheel dataset, Bayesian GMM-VAE used as illustration

Epoch 500

Experimental Setup

- Datasets:
 - ► TIMIT
 - Xitsonga
- Measures:
 - Normalized Mutual Information (NMI, higher is better): Use confusion matrix between AUs and ground truth phones, calculate mutual information and divide by ground truth phone entropy
 - Equivalent Phone Error Rate (PER, lower is better): Use confusion matrix to define mapping from AU to most overlapping ground truth phone, translate AU into phone alignments, remove repititions and calculate error rate wrt. ground truth phone alignment.
- Varied parameters:
 - Emission covariance type: (cov type, Full more flexible than Diag)
 - SVI learning rate (SVI Ir, matching with NN learning rate)
 - ► DP concentration (**DPC**, higher means fewer units are pruned)

model/cov type	SVI lr	DPC	PER	NMI	#AU
GMM-HMM/Diag	-	-	65.42	37.84	72 72
	-	-	56.54	45.90	12
	0.0010	1.000	58.74	45.08	72
	0.0010	0.100	56.57	45.97	85
DHIVIVIVAE/Diag	0.0010	0.010	57.31	44.58	87
	0.0100	0.010	63.12	38.81	37

Same number of AUs forced: Improved Performance

model/cov type	SVI lr	DPC	PER	NMI	#AU
GMM-HMM/Diag	-	-	65.42	37.84	72
HMM-VAE/Full	-	-	58.54	43.90	72
	0.0010	1.000	58.74	45.08	72
	0.0010	0.100	56.57	45.97	85
DI ININI VAL/ Diag	0.0010	0.010	57.31	44.58	87
	0.0100	0.010	63.12	38.81	37

Best result with same learning rate and reduced concentration

model/cov type	SVI lr	DPC	PER	NMI	#AU
GMM-HMM/Diag	-	-	65.42	37.84	72
HMM-VAE/Full	-	-	58.54	43.90	72
	0.0010	1.000	58.74	45.08	72
	0.0010	0.100	56.57	45.97	85
DI ININI VAL/ Diag	0.0010	0.010	57.31	44.58	87
	0.0100	0.010	63.12	38.81	37

Concentration too low: slight performance loss

model/cov type	SVI lr	DPC	PER	NMI	#AU
GMM-HMM/Diag	-	-	65.42	37.84	72
HMM-VAE/Full	-	-	58.54	43.90	72
	0.0010	1.000	58.74	45.08	72
	0.0010	0.100	56.57	45.97	85
DHIVIIVIVAE/ Diag	0.0010	0.010	57.31	44.58	87
	0.0100	0.010	63.12	38.81	37

Low concentration, learning rate too high: performance breaks down (However: still better than GMM-HMM, considerably fewer AUs)

model	Cov type	SVI lr	DP C	PER	NMI	#AU
GMM-HMM HMM-VAE	Diag Full	-	-	72.60 61.90	35.00 37.60	69 69
BHMMVAE	Diag	0.001	1.000	62.65	37.08	69
	Full	0.001	1.000	62.64	37.08	69
	Diag	0.001	0.100	62.09	40.06	100
	Full	0.001	0.010	62.57	37.06	100
	Full	0.005	0.010	61.97	39.67	61

Same number of AUs forced: Only slight difference between full and diag

Acoults on Allsonga	Results	s on X	litsonga
---------------------	---------	--------	----------

model	Cov type	SVI lr	DP C	PER	NMI	#AU
GMM-HMM HMM-VAE	Diag Full	-	-	72.60 61.90	35.00 37.60	69 69
	Diag Full	0.001 0.001	1.000 1.000	62.65 62.64	37.08 37.08	69 69
BHMMVAE	Diag	0.001	0.100	62.09	40.06	100
	Full Full	0.001 0.005	0.010 0.010	62.57 61.97	37.06 39.67	100 61

Best result (for NMI): low learning rate, but many AUs

Results	on	Xitsonga
results	0.1	7 the sound a

model	Cov type	SVI lr	DP C	PER	NMI	#AU
GMM-HMM HMM-VAE	Diag Full	-	-	72.60 61.90	35.00 37.60	69 69
BHMMVAE	Diag	0.001	1.000	62.65	37.08	69
	Full	0.001	1.000	62.64	37.08	69
	Diag	0.001	0.100	62.09	40.06	100
	Full	0.001	0.010	62.57	37.06	100
	Full	0.005	0.010	61.97	39.67	61

Full covariance matrices: Good result possible, but well tuned learning rate needed!

- · Bayesian priors lead to improved results
- Including a Dirichlet Process prior allows the model to autonomously infer the number of AUs
- Outcomes reasonably robust wrt. DP concentration
- SVI allows learning of probabilistic models in concert with NNs, but well matched learning rates necessary to obtain good results

Backup: Stochastic Variational Inference

SVI (Hoffmann)

- $\hat{\lambda}_n$ are natural posterior parameter values for current example
- Natural gradient for ELBO (single example): $\tilde{\nabla}_{\lambda} \mathcal{L} = \hat{\lambda}_n \lambda$
- Gradient update: $\lambda_{n+1} = \lambda_n + \tau \left(\hat{\lambda}_n \lambda_n \right) = (1 \tau) \lambda_n + \tau \hat{\lambda}_n$
- Extend to minibatch algorithm: $\hat{\lambda}_m = \frac{N}{M_m} \sum_{n \in \mathcal{M}_m} \hat{\lambda}_n$

Advantage of SVI

- Batch VI leads to model training velocity mismatch
- SVI enables minibatch algorithm
- Two different learning rates to match

Backup: Natural Gradients

- Gradient of ELBO contains Hessian of normalizer: $\nabla_{\lambda} \mathcal{L} = \nabla_{\lambda} \nabla_{\lambda}^{\mathrm{T}} \mathbf{a}(\lambda) \left(\hat{\lambda}_{n} - \lambda_{n} \right)$
- Natural gradient from information geometry: $\tilde{\nabla}_{\lambda} \mathcal{L} = I(\lambda)^{-1} \nabla_{\lambda} \mathcal{L}$ (Works better, but requires inverse of fisher information matrix)
- For exponential family: $I(\lambda) = \nabla_{\lambda} \nabla_{\lambda}^{T} a(\lambda)$
- \Rightarrow Natural gradient simplifies gradient calculation for ELBO!

Backup: Initialization options

pre-train

Pseudo-supervised pretraining (20 epochs) with randomly generated alignment (fixed length) as label sequence for each utterance

cluster

Initialize latent space with standard VAE and perform k-means clustering (k = 3U) on latent space to initialize state distributions