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Introduction

phones

AUs

Acoustic Unit Discovery
Segment speech into resonable (phone-like) acoustic units (AUs) and
simultaneously learn set of AUs
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Hidden Markov Model Variational Autoencoder
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Hidden Markov Model Variational Autoencoder
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Bayesian HMM-VAE

Drawbacks of HMM-VAE
• Number of AUs fixed up-front
• Maximum Likelihood for latent model: regularization issues

Proposed Changes
• Model should learn number of necessary AUs itself
→ Model number of HMMs/AUs with categorical distribution and

Dirichlet process (DP) prior
• Place conjugate priors over all latent model parameters
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Graphical Model

 decoder

encoder

AU label HMM state latent code speech feature

• Special cases:
I x = y: Bayesian DP-HMM
I Fixed number for c, no priors: HMM-VAE

• Approximate DP with finite symmetric
Dirichlet distribution (truncate at U=100)
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Graphical Model

 decoder

encoder

AU label HMM state latent code speech feature

VAE

• Special cases:
I x = y: Bayesian DP-HMM
I Fixed number for c, no priors: HMM-VAE

• Approximate DP with finite symmetric
Dirichlet distribution (truncate at U=100)
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Graphical Model

 decoder

encoder

AU label HMM state latent code speech feature

Dirichlet process

• Special cases:
I x = y: Bayesian DP-HMM
I Fixed number for c, no priors: HMM-VAE

• Approximate DP with finite symmetric
Dirichlet distribution (truncate at U=100)
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Graphical Model

 decoder

encoder

AU label HMM state latent code speech feature

single latent HMM

• Special cases:
I x = y: Bayesian DP-HMM
I Fixed number for c, no priors: HMM-VAE

• Approximate DP with finite symmetric
Dirichlet distribution (truncate at U=100)
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Training

Cost Function: Evidence Lower Bound (ELBO)
Insight: Decompose into three distinct terms:

L = Eq(X;φ) [log p(Y|X; δ)] + H(q(X;φ))

+ Eq(X;φ)

[
Eq(Z,C,Ω;λ)

[
log p(X,Z,C,Ω;λ0)

q(Z,C,Ω;λ)

]
︸ ︷︷ ︸

ELBO of Bayesian DP-HMM with “observations” X

]
.

Consequences
• Decoder NN training needs first term (minibatch SGD)
• Encoder NN training needs all three terms (minibatch SGD)
• Latent model training needs third term (Stochastic Variational

Inference (SVI))
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Example: Pinwheel

Synthetic pinwheel dataset, Bayesian GMM-VAE used as illustration

observation space latent code space

Epoch 1
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Example: Pinwheel

Synthetic pinwheel dataset, Bayesian GMM-VAE used as illustration

observation space latent code space

Epoch 500
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Experimental Setup

• Datasets:
I TIMIT
I Xitsonga

• Measures:
I Normalized Mutual Information (NMI, higher is better):

Use confusion matrix between AUs and ground truth phones,
calculate mutual information and divide by ground truth phone
entropy

I Equivalent Phone Error Rate (PER, lower is better):
Use confusion matrix to define mapping from AU to most
overlapping ground truth phone, translate AU into phone alignments,
remove repititions and calculate error rate wrt. ground truth phone
alignment.

• Varied parameters:
I Emission covariance type: (cov type, Full more flexible than Diag)
I SVI learning rate (SVI lr, matching with NN learning rate)
I DP concentration (DPC, higher means fewer units are pruned)
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Results on TIMIT

model/cov type SVI lr DPC PER NMI #AU
GMM-HMM/Diag - - 65.42 37.84 72
HMM-VAE/Full - - 58.54 43.90 72

0.0010 1.000 58.74 45.08 72
0.0010 0.100 56.57 45.97 85
0.0010 0.010 57.31 44.58 87BHMMVAE/Diag

0.0100 0.010 63.12 38.81 37

Same number of AUs forced: Improved Performance
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Results on TIMIT

model/cov type SVI lr DPC PER NMI #AU
GMM-HMM/Diag - - 65.42 37.84 72
HMM-VAE/Full - - 58.54 43.90 72

0.0010 1.000 58.74 45.08 72
0.0010 0.100 56.57 45.97 85
0.0010 0.010 57.31 44.58 87BHMMVAE/Diag

0.0100 0.010 63.12 38.81 37

Best result with same learning rate and reduced concentration
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Results on TIMIT

model/cov type SVI lr DPC PER NMI #AU
GMM-HMM/Diag - - 65.42 37.84 72
HMM-VAE/Full - - 58.54 43.90 72

0.0010 1.000 58.74 45.08 72
0.0010 0.100 56.57 45.97 85
0.0010 0.010 57.31 44.58 87BHMMVAE/Diag

0.0100 0.010 63.12 38.81 37

Concentration too low: slight performance loss
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Results on TIMIT

model/cov type SVI lr DPC PER NMI #AU
GMM-HMM/Diag - - 65.42 37.84 72
HMM-VAE/Full - - 58.54 43.90 72

0.0010 1.000 58.74 45.08 72
0.0010 0.100 56.57 45.97 85
0.0010 0.010 57.31 44.58 87BHMMVAE/Diag

0.0100 0.010 63.12 38.81 37

Low concentration, learning rate too high: performance breaks down
(However: still better than GMM-HMM, considerably fewer AUs)
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Results on Xitsonga

model Cov type SVI lr DP C PER NMI #AU
GMM-HMM Diag - - 72.60 35.00 69
HMM-VAE Full - - 61.90 37.60 69

Diag 0.001 1.000 62.65 37.08 69
Full 0.001 1.000 62.64 37.08 69
Diag 0.001 0.100 62.09 40.06 100
Full 0.001 0.010 62.57 37.06 100

BHMMVAE

Full 0.005 0.010 61.97 39.67 61

Same number of AUs forced: Only slight difference between full and diag
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Results on Xitsonga

model Cov type SVI lr DP C PER NMI #AU
GMM-HMM Diag - - 72.60 35.00 69
HMM-VAE Full - - 61.90 37.60 69

Diag 0.001 1.000 62.65 37.08 69
Full 0.001 1.000 62.64 37.08 69
Diag 0.001 0.100 62.09 40.06 100
Full 0.001 0.010 62.57 37.06 100

BHMMVAE

Full 0.005 0.010 61.97 39.67 61

Best result (for NMI): low learning rate, but many AUs
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Results on Xitsonga

model Cov type SVI lr DP C PER NMI #AU
GMM-HMM Diag - - 72.60 35.00 69
HMM-VAE Full - - 61.90 37.60 69

Diag 0.001 1.000 62.65 37.08 69
Full 0.001 1.000 62.64 37.08 69
Diag 0.001 0.100 62.09 40.06 100
Full 0.001 0.010 62.57 37.06 100

BHMMVAE

Full 0.005 0.010 61.97 39.67 61

Full covariance matrices: Good result possible, but well tuned learning
rate needed!
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Conclusions

• Bayesian priors lead to improved results
• Including a Dirichlet Process prior allows the model to autonomously

infer the number of AUs
• Outcomes reasonably robust wrt. DP concentration
• SVI allows learning of probabilistic models in concert with NNs,

but well matched learning rates necessary to obtain good results
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Backup: Stochastic Variational Inference

SVI (Hoffmann)

• λ̂n are natural posterior parameter values for current example
• Natural gradient for ELBO (single example): ∇̃λL = λ̂n − λ
• Gradient update: λn+1 = λn + τ

(
λ̂n − λn

)
= (1− τ)λn + τ λ̂n

• Extend to minibatch algorithm: λ̂m = N
Mm

∑
n∈Mm

λ̂n

Advantage of SVI
• Batch VI leads to model training velocity mismatch
• SVI enables minibatch algorithm
• Two different learning rates to match
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Backup: Natural Gradients

• Gradient of ELBO contains Hessian of normalizer:
∇λL = ∇λ∇T

λ a(λ)
(
λ̂n − λn

)
• Natural gradient from information geometry:
∇̃λL = I(λ)−1∇λL
(Works better, but requires inverse of fisher information matrix)

• For exponential family: I(λ) = ∇λ∇T
λ a(λ)

⇒ Natural gradient simplifies gradient calculation for ELBO!
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Backup: Initialization options

pre-train
Pseudo-supervised pretraining (20 epochs) with randomly generated
alignment (fixed length) as label sequence for each utterance

cluster
Initialize latent space with standard VAE and perform k-means clustering
(k = 3U) on latent space to initialize state distributions
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