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Abstract

The weighted prediction error (WPE) algorithm has proven to
be a very successful dereverberation method for the REVERB
challenge. Likewise, neural network based mask estimation
for beamforming demonstrated very good noise suppression in
the CHiME 3 and CHiME 4 challenges. Recently, it has been
shown that this estimator can also be trained to perform dere-
verberation and denoising jointly. However, up to now a com-
parison of a neural beamformer and WPE is still missing, so is
an investigation into a combination of the two. Therefore, we
here provide an extensive evaluation of both and consequently
propose variants to integrate deep neural network based beam-
forming with WPE. For these integrated variants we identify
a consistent word error rate (WER) reduction on two distinct
databases. In particular, our study shows that deep learning
based beamforming benefits from a model-based dereverbera-
tion technique (i.e. WPE) and vice versa. Our key findings are:
(a) Neural beamforming yields the lower WERs in comparison
to WPE the more channels and noise are present. (b) Integration
of WPE and a neural beamformer consistently outperforms all
stand-alone systems.

Index Terms: speech recognition, speech enhancement, de-
noising, dereverberation

1. Introduction

Automatic speech recognition (ASR) has found wide-spread ac-
ceptance and works astonishingly well in close-talking scenar-
ios. Although a lot of research is devoted to far-field technolo-
gies and products are already commercially available, ASR in
reverberant and noisy environments remains challenging. These
impairments can be addressed with a dereverberating and/or de-
noising front-end.

WPE is a compelling algorithm to blindly dereverberate
acoustic signals based on long-term linear prediction. Pro-
posed as early as 2008 it gained constant attention in subsequent
years [1, 2]. Possibly most prominent is its use in the Google
Home speech assistant hardware in online conditions [3, 4].

Signal distortions due to noise are addressed quite differ-
ently. Besides denoising auto-encoders [5, 6] and dictionary
based approaches [7] beamforming is very successful [8, 9]. As
of recently, deep neural networks (DNNs) are employed to more
robustly estimate masks which are then used to calculate speech
and noise covariance matrices for beamforming. Most notably,
all top performing systems of the CHiME 4 challenge employed
some form of neural beamforming [10, 11, 12, 13]. Interest-
ingly, when the mask estimator is trained to distinguish between
early arriving speech vs. late arriving speech and noise, the
beamformer dereverberates and denoises the observation [14].

However, there is limited research on integrating derever-
beration and beamforming. Delcroix et al. compare consecutive
execution of either minimum variance distortionless response
(MVDR) beamforming followed by WPE or vice versa [15] on
REVERB challenge data [16] but do not consider any further
integration. They estimate noise covariance matrices on the ini-
tial and final 10 frames of each utterance but do not use any kind
of DNN for mask estimation. Kinoshita et al. evaluate, how
WPE profits from side information provided by a DNN [17].
They conclude, that the DNN does not improve overall derever-
beration performance over WPE but allows to operate on much
shorter block sizes without performance degradation. Cohen et
al. use WPE and MVDR beamforming in an interesting two-
step system: WPE dereverberates the signal first and provides
a distortion covariance matrix based on the estimate of the re-
verberation tail. Then, an MVDR beamformer uses the covari-
ance matrix of the reverberation tail instead of a noise covari-
ance matrix [18]. Ito et al. elegantly integrate WPE and model
based blind source separation but again omit any discrimina-
tively trained model for mask estimation [19].

To the best of our knowledge an integration of WPE and
neural network based beamforming is still missing. There-
fore we propose to combine neural network based generalized
eigenvalue (GEV) beamforming and WPE dereverberation and
assess consecutive and integrated combinations. To provide
an in-depth analysis we evaluate all systems on the REVERB
challenge data [16], which generally favors dereverberation al-
gorithms, and on a database composed of Wall Street Journal
(WSJ) utterances [20] with VoiceHome room impulse responses
(RIRs) and noise [21, 22], which tends to favor beamforming
approaches.

2. Scenario and signal model

Let an observed signal vector y; s in the short time Fourier
transformation (STFT) domain cover D microphone channels,
where ¢ and f are the time frame index and frequency bin index,
respectively. The observation may be impaired by (convolutive)
reverberation and additive noise n; s. We here assume, that the
early part of the RIR is beneficial whereas the reverberation tail
hinders understanding. Therefore, we consider the first 50 ms
after the main peak of the RIR as h°*™Y and the remaining part
as A1), Consequently, the mixing process in the STFT do-
main is modeled as follows:
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where x¢* and x;* are the STFTs of the source signal con-

volved with the earl}; RIR and with the late reflections, respec-
tively. In essence, we explicitly allow RIRs longer than the
length of a DFT window.



3. Baseline: WPE

The underlying idea of WPE is to estimate the reverberation tail
of the signal and subtract it from the observation to obtain a
maximum likelihood estimate of early arriving speech.

Let us start by defining how to obtain a single channel esti-
mate with given filter weights g, ¢ q a:
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where A > 0 is a minimum delay to avoid removing corre-
lations caused by the speech source, K is the number of taps
used for estimation and d is the sensor index. To simplify no-
tation Gy € CPF*D and §,_ A ; € CPE*! are stacked rep-
resentations of the filter weights and the observations. WPE
maximizes the likelihood of the model under the assumption
that each direct signal is a realization of a zero-mean complex
(proper) Gaussian with an unknown time-varying variance ¢, s:
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The maximum likelihood optimization does not lead to a closed
form solution. However, an iterative procedure alternates be-
tween estimating the filter coefficients Gy and the time-varying
variance A, f:
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Here, we use a context of (§ + 1 + ¢) frames to improve the
variance estimate as proposed by Nakatani et al. [23].

4. Baseline: Neural beamforming

Neural beamforming combines a DNN-based mask estimator
with an analytic formulation to obtain a beamforming vector for
speech enhancement [14]. Firstly, a mask estimation network is
trained on single channel magnitude spectra to guarantee inde-
pendence from the microphone array configuration. The train-
ing minimizes a cross entropy loss with an oracle speech and
distortion mask. For denoising, the mask estimator is trained to
differentiate between speech and noise. As demonstrated in an
earlier study [14], the neural beamformer given the right train-
ing targets is also able to perform denoising and dereverberation
simultaneously to some degree. Therefore, we here opt to train
it to distinguish between the early arriving speech on the one
hand and the late arriving speech and noise on the other hand:
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where th*/™ are threshold values to improve robustness'. The

mask estimator consists of a bidirectional long short-term mem-
ory (BLSTM) layer with 512 forward and 512 backward units,

!For details regarding the thresholds see [14] Sec. 3.3.

two linear layers with 1024 units and ELU activation func-
tions [24] and a final linear layer with 2 - 513 units and a sig-
moid activation function [14]. Thus, the final layer yields the
two masks for each channel. The masks for each channel are
pooled with a median operation to obtain M o f ) and M

The GEV beamformer has proven to be robust with re-
spect to numerical instabilities and yields great improvements
in terms of both signal to noise ratio (SNR) gain and WER re-
duction, while often outperforming the frequently used MVDR
beamformer [8, 14]. It optimizes the expected output SNR:
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where the spatial covariance matrices are obtained by a
weighted mean of dyadic products:
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The enhanced signal is then given by Z,;~ = w?yt, ro Itis
naturally constrained to linear effects and leaves all further non-
linear enhancements to the acoustic model (AM). To reduce dis-
tortions caused by arbitrary scaling of each beamforming vec-
tor, we opt to apply blind analytic normalization (BAN) [8].

5. Proposed systems

We propose and analyze three speech enhancement front-ends
which can then be used with any single-channel ASR back-end.
The first two combine WPE with neural beamforming but avoid
any interaction between the two algorithms. Both can be seen
as the logical extension of [15] with a neural network mask es-
timator for the beamforming step. The third is a real integration
of both algorithms with a feedback loop.

5.1. Neural beamforming followed by WPE

One option is to perform neural beamforming first as depicted
in Fig. 1. A DNN estimates masks which are then used to obtain
speech and distortion covariance matrices with Eq. (10). GEV
filter coefficients are then obtained with Eq. (9) and applied
to the observation to obtam an intermediate enhanced single-
channel signal meafrly = w'y.,s. Subsequently three iterations
of single channel WPE according to Eqs. (4) — (7) (omitting the
summation over d) are performed to obtain an estimate £ early
Using single channel WPE is significantly faster, but cross—
channel information can not be exploited for further derever-
beration. In this constellation a context of § > 0 is particularly
important for a robust power estimate.
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Figure 1: Neural beamforming followed by WPE. Power in each
time-frequency bin is estimated in the PE block. WPE can just
operate on a single channel but is exposed to less noise.



5.2. WPE followed by neural beamforming

When applying WPE first as in Fig. 2, the power estimation is
initialized with the observed signal plugged into Eq. (4). Con-
secutively three WPE iterations are performed. The algorithm
has to estimate more parameters on each utterance but can po-
tentially use cross-channel information for dereverberation to
obtain X;° %" Then, the end result is obtained by applying the
beamforming vector wy to the dereverberated signal, although
the mask estimator trained to select early arriving speech just
saw the observation y¢, ¢. It is possible to perform mask estima-
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tionon X, ", which yields further improvements.
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Figure 2: WPE followed by neural beamforming. The beam-
Sformer receives a dereverberated version of the observation.
Power in each time-frequency bin is estimated in the PE block.

5.3. Integration of neural beamforming and WPE

Alternatively, the beamforming step can be integrated into the
WPE loop as shown in Fig. 3. This way, the power estimates
At, s for WPE are computed from the beamforming result and
are already more precise. Assuming a number of three WPE
iterations, the mask estimator has to run only once whereas
beamforming is performed four times. Since the beamforming
is much faster than the neural network additional beamform-
ing steps are cheap. It is possible to run the mask estimator

n )Acff*fﬂy in each iteration which improves the WERs but is
computationally more expensive.
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Figure 3: Proposed way to integrate neural beamforming and
WPE dereverberation. Masks for beamforming are provided by
a DNN. Power in each time-frequency bin is estimated in the
PE block. After the first iteration, beamforming is applied to
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the dereverberated estimate X;"; Y instead of the input y .

6. Acoustic model

To train an acoustic model for each database, we first extracted
alignments by processing the early arriving speech xf:}rly us-
ing a triphone GMM-HMM recognizer. We then extracted
MEFCC features from the reverberated and noisy observations
with deltas and delta-deltas to train a 7 4 1 layer acoustic model
with a context of 5 + 1 4 5 frames. The training recipe adopts

the mechanics of the CHiME 3 baseline DNN training recipe’.

2https://github.com/kaldi-asr/kaldi/blob/
master/egs/chime3/s5/local/run_dnn.sh

7. Evaluation

To assess the advantages and disadvantages of each approach
we evaluate the proposed combinations and the stand-alone sys-
tems in terms of WERs on two distinct databases: (a) The
REVERB challenge database is very reverberated with very
little noise. However, the reverberation is realistic, since the
database contains real recordings in reverberant rooms. (b) The
WSJ+VoiceHome database is fairly noisy. The room impulse
responses are recorded and convolved with the utterances grant-
ing more control over the simulation setup.

All presented WERs are obtained using the standard tri-
gram language model available with the WSJ corpus. In all
presented results language model weight € {4, ...,15}, num-
ber of WPE filter taps K € {1,...,20}, delay A € {1,2,3}
and context § € {0, 1} for power estimation were optimized on
the development set of each database. The DFT window size
was set to 1024 (64 ms) while the shift was set to 256 (16 ms)
for all reported results.

7.1. Results on REVERB challenge data

The REVERB challenge dataset [16] contains simulated and
real utterances. The training data only consists of simulated
recordings while we used only the real development and test
recordings for cross-validation and test, respectively. For simu-
lated data WSJCAMO utterances [25] are convolved with mea-
sured RIRs. Noise is added with approximately 20 dB SNR.
Reverberation times (T60) are in the range of 350 — 700 ms.
The real dataset consists of utterances from the MC-WSJ-AV
corpus [26] which are recorded in a noisy reverberant room with
a reverberation time of approximately 700 ms.

First, we analyzed the effect of different numbers of filter
taps K on the WER. Previous studies found, that longer utter-
ances allow higher numbers of filter taps since the parameters
can be more precisely estimated. For the given test dataset with
an average utterance duration of 6.5s around 7 taps (160 ms
field of view) turned out to be optimal as visualized in Fig. 4.
The integration as well as WPE—GEV show a similar trend for
higher K. However, the steep WER increase for K < 4 is
gone. Already a very small number of taps yields an improve-
ment over the dereverberating GEV beamformer itself. One
possible interpretation is, that reduction of very late reverber-
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Figure 4: WER depending on number of taps K for different
systems on the REVERB real evaluation set with 8 channels. In-
tegrated methods tend to work better for lower number of taps.



Table 1: WERs in % for all systems evaluated on the REVERB
real evaluation dataset with different number of channels. Many
systems coincide for the single channel track.

Front-end Number of channels

1 2 4 8

Unprocessed  24.5

WPE 207 182 173 159
GEV 245 211 163 137
GEV—WPE 20.7 19.7 145 123
WPE—GEV 20.7 16.2 128 119
Integration 20.7 17.0 13.0 12.6

ation is already done by the dereverberating beamformer and
WPE just needs to cover shorter time differences. The combi-
nation GEV—WPE is fairly constant in the range of 0 to 20 taps
since this combination just needs to estimate K - K instead of
D - K -D - K coefficients.

Tbl. 1 summarizes WERs for all systems. The WER for
unprocessed signals coincides with beamforming when just one
channel is available since a BAN filter is used. In combina-
tions, the WER reduction is achieved due to WPE. For up to
two channels WPE outperforms a dereverberating GEV beam-
former. The best performance with 8 channels is achieved when
using WPE—GEYV with a relative WER reduction of 51 % over
the unprocessed system and 25 % over WPE alone. Neverthe-
less, WPE causes a relative WER reduction of 13 % over a dere-
verberating GEV and is therefore crucial when thriving for best
performance.

7.2. Results on WSJ with VoiceHome RIRs and noise

Similar to the simulation setup proposed by Bertin et al. [22]
WSIJ utterances (test_eval92_5k) are convolved with
VoiceHome RIRs and VoiceHome background noise [21] with
reverberation times (T60) in the range of 395 — 585 ms. Worth
noting, the RIRs are recorded in three different houses, such that

:r;‘ N Unprocessed
40 \% . --- WPE
A\ ‘\ GEV
xe & SO e GEV—WPE
g N\ ‘\ --- WPE—GEV
% 90 "\ s Integration
= e
0 \ \ \ \ \ \
-5 0 5 10 15 20 25
SNR in dB

Figure 5: Comparison of WERs for different SNR conditions
and with 8 channels. The WSJ+VoiceHome test dataset was
recreated for each SNR condition. All parameters for each dat-
apoint are obtained on the development dataset.

Table 2: WERs in % for all systems evaluated on the
WSJ+VoiceHome dataset with different number of channels.
Many systems coincide for the single channel track.

Front-end Number of channels

1 2 4 8

Unprocessed  39.9

WPE 37.0 37.1 356 34.6
GEV 40.0 302 199 153
GEV—WPE 370 288 198 15.0
WPE—GEV 37.0 272 181 143
Integration 37.0 26.7 181 13.7

training, cross-validation and test can use disjunct RIRs to en-
sure generalization. The VoiceHome background noise is very
dynamic and contains i.e. vacuum cleaner, dish washing or in-
terviews on television typically found in households.

On the WSJ+VoiceHome dataset best WERs were obtained
without BAN. However, to ease comparison with the REVERB
results, we opted to present results with BAN.

Since [15] states that WPE shows some noise robustness al-
though the original derivation does not explicitly model additive
noise, we first analyze the effect of different SNR conditions. To
do so, we sweep the SNR of every utterance of the test data in
Fig. 5. It turns out that WPE is able to improve WERs in all
noise conditions. However, beamforming alone is the signifi-
cant driver on this noisy database. Particularly in noisy condi-
tions the integration of neural network based beamforming into
the WPE processing loop yields best performance.

Tbl. 2 summarizes WERs for each system with a fixed ran-
dom SNR in the range of 0 to 10 dB. The GEV result does not
coincide with the unprocessed signal, since our implementation
may introduce phase changes when performing an eigenvalue
decomposition on a scalar. The integrated system works best
for any number of D > 1 channels.

8. Future directions

We are interested in analyzing how a single neural network can
provide a power estimate for WPE similar to [17] as well as a
mask estimate for neural beamforming thus allowing to get rid
of the iteration in a noise robust integrated system.

9. Conclusions

Across both databases and a wide range of parameter combi-
nations, a combination of WPE and neural GEV beamforming
consistently improves WERs over (a) a dereverberating neural
beamformer and (b) WPE dereverberation. Neural beamform-
ing is particularly important when many channels are available
and the observations are very noisy. However, WPE is crucial
to obtain best WERs when combined with neural beamforming.
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