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Abstract—In this paper, we present a neural network based
classification algorithm for the discrimination of moving from
stationary targets in the sight of an automotive radar sensor.
Compared to existing algorithms, the proposed algorithm can
take into account multiple local radar targets instead of perform-
ing classification inference on each target individually resulting in
superior discrimination accuracy, especially suitable for non rigid
objects, like pedestrians, which in general have a wide velocity
spread when multiple targets are detected.

Index Terms—Automotive radar, classification, pedestrian, sta-
tionary, Recurrent Neural Network.

I. INTRODUCTION

In the development of Advanced Driver Assistant Systems
(ADAS) for partial or full autonomous cars, a full scene
understanding is a desired objective and the motivation for
multiple publications in the past. On the way to full scene
understanding, automotive radar sensors could play an import
role, since they are mostly insensitive to weather and lighting
conditions, so can operate in almost any relevant environ-
ment condition other than e.g. cameras and LIDARs. For
ADAS functions the classification of surrounding objects is
an essential task, hence different traffic objects require special
control functions in critical situations [1]. The ADAS functions
therefore need extensive information about the surrounding
objects like their size, position, class and trajectory.

Since radar signal processing offers just a limited measure-
ment space with geometric (relative distance and angle of
arrival) and kinematic (relative velocity) states, an appropriate
model for accurate classification is necessary. One example
where kinematic information is being used in radar, is the
human gait detection, where slight doppler-shifts (”Micro-
Doppler“), introduced by the different oscillating body parts
of a human when walking through a radar beam, are detetcted,
see [2] [3]. Publications known to the authors, dealing with
micro-doppler doppler classification approaches in general
have full access to the complete doppler spectrum. Since
current automotive radar sensors are very restricted in mem-
ory and processing time, they require significant information
compression, where the full doppler spectrum cannot be

stored during the complete signal processing time for exactly
this reason. One of the earliest signal processing stages for
automotive radar is target detection, where individual point
target are detected in the noisy radar reflections. These targets,
in general represent a subset of the range-doppler domain
and therefore can be used for target classification, once the
access to the whole range-doppler spectrum is not longer
possible for subsequent processing algorithms. In previous
publications [7], [8] we proposed a hypothesis based algorithm
for the instantaneous discrimination of individual targets into
the classes stationary or moving. Due to the discrimination
of targets individual, the algorithms struggles to annotate
very slow moving object reflections from pedestrian as mov-
ing, which appear occasionally like ground touching legs.
For subsequent processing steps, this could reduce system
performance significantly. To solve this issue, we present
a neural network based method for the discrimination of
stationary and moving targets in the vehicle environment,
which investigates targets in a cluster and thus is able to
understand local target relationship for improved inference.
The proposed algorithm can thus be understood as the primary
stage of more complex classification approaches. It estimates
a confidence of its classifications, which support adjacent
post processing steps in a way, that classical statistical data
processing can be utilized. In contrast to this publication,
there are also other classification algorithms which provide
inference by investigating the relative movement of the object
over longer observation time via tracking [4], [5] and therefore
require longer period for accurate inference.

The paper is structured as follows. In section II the model
for stationary targets is derived to motivate the used features
for the proposed neural network algorithm. Crucial for neural
network parameter adjustment is also the utilized training data,
which in this paper is gathered in simulation and described
in detail. Also the proposed model architecture is given. In
section III the performance of the proposed algorithm is
evaluated and compared to our previous algorithm. In section
IV the paper is concluded.



II. STATIONARY TARGET DISCRIMINATION

A. Basic Model

Modern automotive radar sensors are capable of resolving
the relative distance R~rP (t), the relative velocity R~̇rP (t) and
the Direction-of-Arrival (DoA) RφS of a targets P in sight. S
describes the sensor coordinate system with Sx being sensor
normal and R the coordinate system which is pointing towards
the target P .

Here the radial velocity vR of a target is measured by
the radar sensor. The velocity vEgo of the ego-vehicle can be
obtained by the vehicles wheel encoders or estimated based
on previously detected stationary targets, see [8]. The relative
velocity equation is then fully described by

vR = vEgo · cos(µΦ), (1)

where the right hand term can be interpreted as the expected
relative velocity assuming a stationary target has been ob-
served.

However, since these variables are in general infected by
noise, the equations becomes an approximation and moving
targets can be detected as outliers in the data, see [7], [6]. The
variables are modeled as random and targets must disagree to
equation 1 significantly to be detected as outliers and thus
moving. Due to this significance very slow moving targets are
often unintentionally classified as stationary, see [8].

B. Annotated data generation

1) Training data: Since training neural networks demands
sufficient amount of annotated data, which is hard and ex-
pensive to gather on real world data, we create artificial data
for training. Since the pysical relationship for stationary radar
targets hold according to eq. 1 it is possible to Monte-Carlo
sample stationary targets in the cos(φ) vs. vr plane. For sta-
tionary targets [−180, 180)° = {φ ∈ IR|−180° ≤ φ < 180°}
and [0, 30]m s−1 = {vEgo ∈ IR|0m s−1 ≤ vEgo ≤ 30m s−1} are
drawn from equal distributions and all variables are then
corrupted with gaussian noise, which variance was identified
for real world radar sensor in [8]. Moving targets, represented
by driving cars, are drawn similar to stationary targets ex-
tended by their longitudinal velocity [4, 30]m s−1 = {vcars ∈
IR|4m s−1 ≤ vcars ≤ 20m s−1} and their heading angle
[−180, 180)° = {ψ ∈ IR|−180° ≤ ψ < 180°}.

In real world observations the collected radar targets are in
general dominated by stationary targets and just a few moving
targets are observed, however, in this work we draw equal
number of moving and stationary targets for every frame in
order not to shift the attention of the trained network more to-
wards stationary targets. Beside stationary and moving targets,
also targets from pedestrians are generated which imitate real
world observations from pedestrian targets. Here we first draw
the pose of pedestrians center in xvs. y-plane, draw the mean
walking velocity from the pedestrian as uniformly distributed
from [1, 3]m s−1 = {vped. ∈ IR|1m s−1 ≤ vped. ≤ 3m s−1}, the
number of the observed targets for each pedestrian nped.,targets ∈
{1, 2, 3, 4} and their placement on the torso or extremity. Then

the noise corrupted relative velocity, range and DoA for each
pedestrian targets is computed.

2) Real world testing data: For testing the proposed al-
gorithm performance, the same dataset which was used in
our previous publication [7], [8] is used. In this dataset,
the ego-vehicle drives on a straight trajectory with varying
velocity and passes pedestrians walking parallel to the ego-
vehicle with also varying velocities. This scenario was chosen,
since walking pedestrians have little velocity difference to
stationary targets and thus makes them hard to detect as
moving targets. This scenario is typical for urban areas, where
walkways often border to driveways, so the scenario has
practical relevance for ADAS. As a radar sensor, a 77GHz
automotive development radar was used, which utilizes phase-
monopulse as DoA estimation technique and provides range
resolution of 0.1875m up to 70m in distance.

C. System Design

The weak point of the classification algorithm from [7]
is, that it classifies each target individually and do not pay
attention to specific data constellations of different target
object, like pedestrians. We have already investigated in [7],
that occasionally misclassification of radar targets associated
to pedestrians appear to very slow movement like periodic
disappearing velocity from pedestrians legs. In that case, the
hypothesis test will favor towards stationary targets. In further
processing steps these misclassified targets can lead to some
confusion for example in stationary environment mapping,
where the ground touching legs, misclassified as stationary,
would result in a stride of the moving pedestrian in the map.
Therefore it is desired to classify all targets belonging to
moving objects as moving, even when they have negligible
relative velocity to stationary objects.

In order to achieve radar targets constellation specific target
classification, we first extract radar targets, which we believe
could be associated to one object and thus form a subset
of the object corresponding micro-doppler spectrum and then
perform inference for target classification, as shown in fig. 1.

detected radar targets

local clustering of radar targets
(mean shift clustering)

classification of radar target cluster
(neural network)

classified radar targets

Figure 1: Flow chart of the proposed algorithm

1) Local clustering of radar targets: In the clustering
step, we utilize mean shift clustering in the x vs. y domain
(→ top view on ego-car), since objects can easily described



here and most likely do not overlap with other targets,
whereas in range-doppler domain clustering algorithm need a
more elaborated structure due to highly overlapping of object
signatures. Mean shift clustering with radial basis function
with bandwith parameter set to an average step with of
pedestrian of 0.7m according to [9], was chosen to collect
radar targets likely stemming from pedestrians. One example
for the clustering is shown in fig. 2, 2nd row.

2) Classification of radar target cluster: Since the detected
clusters in general consist of a non constant number of
targets, the classifier must take the radar target sequence
length into account. To deal with this specific requirement,
recurrent neural networks (RNN) come into spotlight. For
exactly that reason, these types of function approximation
tools are used for example in speech recognition and text-
to-text transcriptions. In our application the radar targets are
streamed into the net in arbitrary arrangement and give an
class probability posterior estimate after completed input, thus
doing multi-to-single prediction. For processing, we allow a
maximum sequence length of 10 targets per cluster, exceeding
leads to discarding of the following targets. However, on real
world data we observed a maximum number of targets per
cluster of 5, so it will not conflict. To allow the network self
modulating the hidden states and forgetting, we choose long
short-term memory (LSTM) in favor of standard RNN’s since
RNN’s tend to unintentionally favor younger input sequence
over older ones to do classification. However, we want the
network to remember essential features of the cluster, no
matter of radar target sequence. The LSTM is designed in
such a way, that it receives the input vector X

X =
[
vr, vEgo, cos(φ), vEgo cos(φ), R, φ

]
(2)

where vr is relative velocity, vEgo is ego-velocity, φ is the DoA,
vEgo cos(φ) is expected relative velocity for a stationary target
and R is range. Here we give network multiple transformed
instances of φ to reduce linearization effort for the net. Based
on eq. 1 the network is provided with all relevant features plus
also polar-coordinates to learn local connection of the targets.
From this 6-by-1 feature vector the network creates a 32-by-1
hidden state vector which is fully connected (weight + bias) to
the 2-by-one logit vector and output (class prediction) is given
by softmax function over the logits. In training we utilize cross
entropy cost function with Adam [10] optimization algorithm
in backpropagation through time for parameter tuning.

III. RESULTS

A. Artificial data

While training the artificial dataset is generated on the fly,
which means, that the network likely never sees a specific
realization multiple times and therefore we do not introduce
further regularization techniques. A subjective overview of
the prediction performance including visual representation of
clustering is given in fig. 2. Here it can be observed, that radar
targets from pedestrians have been successfully clustered,
illustrated by equally colored rings around the purple colored
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Figure 2: 1st row) ground truth annotation, 2nd row) ground
truth annotation & cluster assignment for pedestrians in bird
view, 3rd row) predictions, 4th row) predictions in bird view

radar targets in fig. 2, row 2. Mostly the predicted class match
to the ground truth, see fig. 2, row 2 vs. fig. 2, row 4.

To give statistical classification performance, the confusion
matrix is given in tab. I, where the prediction is stated vs. the
actual cluster annotations of moving, pedestrian and stationary.



Table I: Confusion matrix - proposed LSTM based classifier
on artificial data

Actual

Prediction
Moving Stationary

Cars (moving) 99.7% 0.3%

Pedestrian 73.0% 27.0%

Stationary 0.7% 99.3%

As a reference, the confusion matrix of the hypothesis test
from [7] is given in tab II.

Table II: Confusion matrix - classifier from [7] on artificial
data

Actual

Prediction
Moving Stationary

Cars (moving) 91.0% 9.0%

Pedestrian 55.2% 44.8%

Stationary 0.5% 99.5%

Comparing these confusion matrices, it can be observed,
that the proposed algorithm achieved in general superior classi-
fication performance for pedestrian compared to the hypothesis
test. Also can be observed, that the classification accuracy
for pedestrians as moving targets increased to 73% coming
from 55.2%. Also the classification accuracy for moving
targets increased to 97.1% coming from 91%. The superior
classification results reflects as well in the prediction overview
in fig. 2. Here the pedestrian radar target clusters have been
classified as moving instead of stationary as intended.

B. Real world data

To quantify the real world performance of the proposed
classification algorithm, we tested the accuracy on real world
data and provide the results as confusion matrix in tab. III and
in IV for the reference algorithm from [7].

Table III: Confusion matrix - proposed LSTM based classifier
on real world

Actual

Prediction
Moving Stationary

Cars (moving) 99.5% 0.5%

Pedestrian 98.6% 1.4%

Stationary 0.4% 99.6%

Table IV: Confusion matrix - classifier from [7] on real world
data

Actual

Prediction
Moving Stationary

Cars (moving) 99.0% 1.0%

Pedestrian 88.0% 12.0%

Stationary 6.2% 93.8%

The superior performance of the proposed classifier can be
observed in a accuracy gain of over ≈ 10% for pedestrians
correctly classified as moving and ≈ 5% for stationary targets.
In contrast to the real world data, both classifiers achieve worse
accuracy on the artificial dataset, which can be justified by
more challenging scenarios in artificial dataset, like arbitrary
heading movements of the moving/pedestrian targets in the
simulation, which was desired for sensitive neural network
parameter tuning.

IV. CONCLUSION

The intention of this paper is to provide a classification
framework, which is able to discriminate moving radar targets
from stationary ones accommodating the local structure of the
radar targets and achieve better discrimination performance
especially for pedestrian targets. Therefore a clustering of
radar targets was performed to extract some local radar target
information and transform it into a proper class prediction.
Since the gathered radar targets per cluster are of uncer-
tain number, a recurrent neural network type was utilized
to perform classification. The proposed classifier achieved a
accuracy gain of ≈ 10% and ≈ 5% for pedestrian targets and
stationary targets respectively compared to a hypothesis based
discrimination framework from prior publication.
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