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Abstract

Acoustic event detection, i.e., the task of assigning a hu-
man interpretable label to a segment of audio, has only
recently attracted increased interest in the research com-
munity. Driven by the DCASE challenges and the avail-
ability of large-scale audio datasets, the state-of-the-art
has progressed rapidly with deep-learning-based classi-
fiers dominating the field. Because several potential use
cases favor a realization on distributed sensor nodes, e.g.
ambient assisted living applications, habitat monitoring
or surveillance, we are concerned with two issues here.
Firstly the classification performance of such systems and
secondly the computing resources required to achieve a
certain performance considering node level feature ex-
traction. In this contribution we look at the balance
between the two criteria by employing traditional tech-
niques and different deep learning architectures, includ-
ing convolutional and recurrent models in the context of
real life everyday audio recordings in realistic, however
challenging, multisource conditions.

Introduction

Recent industry trends point towards an increase in pop-
ularity of the Internet of Things (IoT) approach us-
ing networked devices such as smartphones, tablets and
wearables, personal assistants (Amazon Echo, Google
Home, Apple Homepod, etc.), and even autonomous
vehicles. Additionally the advent of 5G connectivity
promises to further increase IoT’s popularity. From the
audio sensing perspective, the benefits of these networks
of acoustic sensors can lead to high potential applications
in the realm of ambient assisted living, habitat monitor-
ing, surveillance, smart-cities, and smart-driving.

The idea of audio feature extraction at node level can
expand the capabilities of IoT oriented acoustic sensor
networks by transferring a part of the computational
load from the server side to the end-user, it can help
improve bandwidth economy by reducing the data trans-
mission’s bitrate and for the cases where data is stored
in the Cloud, it can help raise privacy levels by replacing
the high-resolution data with a lower-resolution represen-
tation. However, the algorithms used for audio feature
extraction at the end-user node must provide a sensible
utility versus expenditure balance.

In this context we measure utility from the perspective of
the system’s performance in acoustic event detection and
audio tagging tasks, using the metrics later described in
the Experiments section. The term expenditure refers
to the computational resources used in fulfilling a spe-
cific task, as typical IoT devices come with physical size,

execution time and battery life constraints, demanding
an optimized usage of the available platform. We have
measured the expenditure by computing the number of
multiply-accumulate operations per second.

In this paper we compare a manually designed, resource
economical audio feature extraction approach based on
the modulation spectrum of mel-frequency cepstral coef-
ficients (MFCCs) against a more complex and resource
demanding deep neural network (DNN) approach, ana-
lyzing them from the utility versus expenditure perspec-
tive. Both feature extractors start off with the same
input, namely mel-band energy features, they then ex-
tract their own lower resolution audio features which are
finally passed to an identical neural network based de-
tection and tagging module. For the detection task the
event and its onset and offset times must be estimated,
while the tagging task asks for the detection of the ac-
tive labels of each sound file only, not requiring start/end
time detection. The two tasks chosen for this comparison
are part of the DCASE 2017 challenge [1], both aiming
at the street level audio environment, however with dif-
ferent levels of complexity. In the following sections we
present the two feature extraction approaches, describe
the classification modules, detail the metrics and exper-
imental scenarios, and in the end show the advantages
and disadvantages of the proposed methods in the two
differently scaled audio environments.

Related Work

The DCASE challenges [1, 2] and the availability of
large-scale audio datasets [3] have allowed the state-of-
the-art in acoustic event detection to progress rapidly
with deep-learning-based classifiers dominating the field
as also demonstrated by some of the DCASE winning
approaches [4, 5]. In the context of acoustic sensor net-
works, the idea of performing node level feature extrac-
tion has been previously promoted by works like [6],
where the authors investigate reducing computational
costs in state-of-the-art deep learning architectures for
acoustic event detection. In contrast to the above, our
approach does not try to optimize end node DNN ex-
penditure, but is more focused on comparing it to the
expenditure of less complex hard-wired feature extrac-
tors.

Previous works have successfully employed modulation
MFCC (Mod-MFCC) features [7, 8, 9] for music genre
and general audio classes discrimination, and for speaker
identification, respectively. The available aggregation di-
mensions of these feature sets allow for task versatility
and feature stream dimensionality control.



Modulation-MFCCs

Borrowing the notation from [9] we hereby describe the
computation of Mod-MFCC features by first introduc-
ing an intermediary step, which is the computation of
log mel-band energy (LMBE) features. These features
will be later used in the Convolutional Neural Network
section. Starting with the short-time Fourier transform
(STFT) representation X (k,b) with window length L,
and step Hp of the signal x(t), where x and b denote
the frequency bin and time frame index, respectively,
the squared-magnitude spectrum is mapped onto the
Mel scale [10], resulting in the Mel-spectrum X e (K, 0),
where k' = 0,1,..., K’ — 1 is the index of the Mel scale
frequency bin. The LMBE features are then obtained by
taking the logarithm of the absolute Mel-spectrum:
Ximbe(k',b) = log | Xmea (K, b)|. (1)
The MFCCs Xptec(n,b) with the cepstral coefficient in-
dexn=0,1,..., K" —1 are computed by taking the dis-
crete cosine transform of the LMBE representation and
selecting the first K coefficients. We then apply a slid-
ing window discrete Fourier transform (DFT) in order to
get the short-time MFCC modulation spectrum
Ly—1
mecc(l/,’r], L) = Z XInfCC(T]7 LHQ + 62)6_3 L2 ; (2)
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where, starting at sub-frame index b = tHs, the sliding
window considers L, consecutive frames. From this we
extract the absolute value. The modulation frequency
bin index is specified by v =0,1,...,Ly/2 and ¢ and Ho
denote the temporal modulation window index and shift,
respectively, with ¢ = 0,1,...,1—1 [7, 11]. The values of
the modulation spectrum are then averaged by means of
moving average (3) where ¢ denotes the averaging win-
dow index and L3 and H3 denote the averaging window
length and shift respectively.
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Due to the previous steps we obtain a reduction of the
temporal resolution by the factor of R = HyH3. To sum-
marize the modulation spectrum, cepstral modulation ra-
tios (CMR) py,|v, (1, ¢) are computed,
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In addition to CMRs, we further compute X,¢c(n) for
the feature vector, where
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mecc(n7¢) = L2 +2
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is the modulation spectrum averaged over all modulation
frequencies v for each MFCC bin 7. These are rewritten
in vector notation and stacked together into one feature
vector

Myt = (X;lfccvphlvpg‘g).r' (6)

For the following, we set L1 = 1764, H; = 882 K’ = 64,
K" = 32, Hy =8, Ly = 16, Hy = {1,2}, Ly = {1,4}.
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Figure 1: The CNN extractor consisting of
three layers. Each layer is represented as
Conv., <filter size>, <number of filters>, <pool size>.
Between the convolution and pooling stages batch normal-
ization and ReLU activation functions are applied.

Convolutional Neural Network

Convolutional neural networks (CNNs) are state-of-the-
art not only in a wide range of computer vision tasks
but also in speech and audio processing including acous-
tic event detection [12, 13]. Having data containing local
structures such as images and spectrograms, CNNs are
trained to extract features suitable for the task of in-
terest. Each layer of a CNN performs convolutions of
the input feature maps with learnable filters. Additional
pooling stages are widely used to make extraction invari-
ant to small translations.

The structure of the CNN-architecture used in this work
is shown in Fig. 1. The input to the CNN is given by
the LMBE spectrogram with 64 LMBESs per time frame,
which are globally normalized to zero mean and unit vari-
ance. Depending on whether we have monaural or binau-
ral audio data the input consists of C =1 or C = 2 fea-
ture maps, respectively. Three layers of convolutions are
used, each followed by batch normalization [14], ReL.U
activation function and max pooling. While with each
layer the number of features in the feature maps is re-
duced, the number of filters is increased. Stacking the
output feature maps results in an output feature size of
F =4 x 128 = 512. To reduce the computational effort
in the subsequent classification, the temporal resolution
is reduced by performing pooling on the time axis as
well. Depending on the pool sizes S; the temporal reso-
lution is, overall, reduced by the factor of R. The CNN
is trained jointly with the classification DNN described
in the following section.

Classification

To perform event recognition, we aim to predict whether
an event is active or inactive in a certain time segment.
We therefore perform K binary classifications in each
time segment with K being the number of events of in-
terest. Acoustic event detection requires high resolution
classification to be able to determine on- and offsets of
events. For audio tagging in contrast it is enough to per-
form one classification for each file and event.

In both cases, however, DNNs are used to provide frame-
level logits Y = [y1,...,yr] = DNN(X) with the same
temporal resolution as the input features X. We com-
pare two different classifier networks here: 1) a simple
multi layer perceptron (MLP) network consisting of two
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Figure 2: DNN topologies of MLP and RNN classifiers.

fully connected layers and 2) a recurrent neural network
(RNN) having two additional layers of bidirectional gated
recurrent units in front of the MLP [15]. The classifica-
tion networks are illustrated in Fig. 2. When per-
forming tagging, frame-level logits are reduced to only
a single vector of file-level logits in terms of averaging
Y <+ 7 ZtT:1 y:. Applying the sigmoid function results
in class specific posteriors Z = o(Y).

At training time the binary cross entropy

T K
L(Z,Z) = ZZztk log Zi, — (1 — zy) log(1 — Z4)
t=1 k=1
is used as loss function with Z denoting the binary target
matrix. In this work neither data augmentation nor event
balancing have been used. The systems are trained using
the Adam optimizer [16] with a learning rate of 0.0001
and mini-batches of 16 examples each with a maximum
length of 512 LMBE-frames.

At testing time binary predictions 2y, = [ > cx] are
obtained by performing thresholding, where ¢y, is the de-
cision threshold. For acoustic event detection the pre-
dictions in an audio file are additionally median filtered
with a filter size of 0.5s.

Experiments

In the following we evaluate the different feature extrac-
tions on sound event detection and audio tagging tasks.
The tasks chosen are part of the DCASE 2017 challenge
[1] and are aimed at the street level audio environment.
We compare the approaches with respect to performance
and computational expenses.

Performance is measured using metrics proposed in [17].
The main metric used here is the error rate measured as
Smer S(m) + D(m) + 1(m)
Nref

where S(m), D(m) and I(m) are the number of substitu-
tions, deletions and insertions, respectively, made by the
system in a segment m and Ny is the total number of
positive events in the reference annotation. For the de-
tection task the evaluation is performed in 1s segments,
while for the tagging task m refers to the file index. As
a second metric the F-measure is used given as the har-

ER =

Table 1: Acoustic Event Detection (N=64, C=2)

MAC Dev Eval

Feat. R DNN [M/s] [ ER F ER F

LMBE 1 MLP | 10.0 [61.4% 56.4% |83.7% 40.6%
LMBE 1 RNN | 12.3 |63.5% 56.5%|81.4% 42.0%
CNN 1 RNN | 62.0 [60.7% 58.7%|77.3% 50.9%
CNN 8 MLP | 264 [60.8% 59.0% |80.2% 50.2%
CNN 8 RNN | 27.0 |58.5% 59.6%|76.8% 50.6%
MOD 8 MLP | 9.7 |62.5% 57.4% |81.6% 49.6%
MOD 8 RNN | 10.0 |61.6% 56.8% |80.2% 45.5%

monic mean of precision P and recall R:

2PR
F =
P+R
with
p— Z%:l TP(m) R— Z%:l TP(m)
Nsys Nref

with TP(m) being the number of true-positives in a seg-
ment m and Ng, being the total number of positive
events in the systems prediction. We choose that model
from the course of the training and those decision thresh-
olds ¢; which minimize the FR in the validation. Similar
to [6] the computational complexity is measured in terms
of Multiply-Accumulation operations (MACs), with one
MAC given by a < a+b-c.

The first task considered is sound event detection in real
life audio. Development and evaluation datasets consist
of 92min and 29 min of binaural audio, respectively, and
annotations for six events are provided with on- and off-
sets. Due to the small size of the dataset, four folds are
provided for cross-validation, splitting the development
set into training and validation partitions, such that each
example is used for validation exactly once. Predictions
are made using chunks of 512 LMBE-frames. Validation
and evaluation are performed jointly, where an event is
marked active in a segment of the evaluation set if at
least two of the trained models mark the event as ac-
tive. The results are shown in Tab. 1. It can be seen
that the recurrent neural network classifiers tend to per-
form better than the MLP classifiers. Comparing the
different features to each other, the CNN feature extrac-
tion clearly outperforms LMBE features and Mod-MFCC
features. However, it can also be seen that the CNN
architectures have significantly increased computational
complexity. Mod-MFCC features in contrast are able to
outperform LMBE features while requiring less compu-
tational expenses than both of the other approaches.

The second task considered is audio tagging. Here a sub-
set of the large-scaled Google AudioSet [3] is used as
employed in task 4 of [1]. It consists of 144 hours of mul-
tisource recordings split into 51172, 488 and 1103 files
with an average length of 9.83 seconds for training, vali-
dation and evaluation, respectively. For each of the files
tags are provided for 17 events, stating whether an event
is active or inactive in the file. Results for this task are
shown in Tab. 2.  Again we can observe that RNNs
are performing better than MLPs. Benefiting from the



Table 2: Audio Tagging (N=256, C=1)

MAC Dev Eval
Feat. R DNN [M/s] [ ER F ER F
LMBE 1 MLP | 5.8 |84.7% 19.0%|76.3% 29.3%
LMBE 1 RNN | 30.5 |70.8% 39.5%|70.4% 44.8%
CNN 1 RNN | 928 |55.9% 54.3%|57.2% 55.2%
CNN 16 MLP | 13.5 |66.2% 46.1%[63.9% 51.7%
CNN 16 RNN | 15.8 |60.9% 49.8%|56.7% 55.1%
MOD 16 MLP | 4.9 [82.5% 28.0%|78.6% 33.7%
MOD 16 RNN | 6.5 |74.9% 34.9%|75.1% 36.1%

increased amount of data the learned CNN feature ex-
traction is outperforming the other approaches with a
big margin. Also the higher resolution LMBEs are out-
performing Mod-MFCC features here. A possible expla-
nation is that, due to the larger amount of data, the
classifier is able to learn more detailed patterns which
are discarded in the hand-crafted Mod-MFCC features.

Conclusions

Our investigations so far have confirmed that state-of-
the-art deep learning approaches for acoustic event detec-
tion and tagging offer very good performance, especially
when paired with a sufficiently large training database,
but they also involve high computational expenditure.
With this is mind we can observe that for smaller scaled
tasks the hand-wired Mod-MFCC features offer decent
performance at much lower costs. As outlook, the combi-
nation of Mod-MFCCs in the form of mecc(u, 7, ) as in-
put for the CNN architecture is of interest, as it promises
to lower expenditure. This of course can be coupled with
CNN expenditure reducing strategies as indicated in [6].
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