

System overview

Highlights

- Complex valued backpropagation through statistical beamforming operation
 - Eliminates the need for parallel clean and noisy data and can be trained on real data only
 - Does not need heuristic masks as targets
 - Whole system works in the same STFT domain, no transformation between front-end and back-end necessary
- Agnostic to the array geometry
- Number of microphones can differ at test time

Acoustic model

- Hybrid approach, model estimates state posteriors
- Trained on whole utterances
- Based on Wide Residual Networks
 - Each block consists of two 2D convolutional layer and a residual connection
 - Number of channels increases with each block: $16 \rightarrow 80 \rightarrow 160 \rightarrow 320$
 - Normalization across time before each non-linearity

ICASSP 2017, New Orleans

BEAMNET: End-to-End Training of a Beamformer-Supported Multi-Channel ASR System

Jahn Heymann, Lukas Drude, Christoph Boeddeker, Patrick Hanebrink, Reinhold Haeb-Umbach, University of Paderborn, Germany {heymann, drude, haeb}@nt.uni-paderborn.de, http://www-nt.uni-paderborn.de

Backpropagation through GEV

- Most crucial step is to find the gradient for the PSD matrices given the gradient for the beamforming vector
- Generalized Eigenvalue problem: $\Phi_{XX}W = \Phi_{NN}W\Lambda$
- Beamforming vector is the eigenvector corresponding to the largest Eigenvalue
- Transform Generalized Eigenvalue problem to standard Eigenvalue problem

 $\Phi W = W \Lambda$ with $\Phi = \Phi_{NN}^{-1} \Phi_{XX}$

Normalize the eigenvector to unit norm

• Gradient can now be calculated as

$$\frac{\partial J}{\partial \Phi^*} = \mathbf{W}^{-H} \left(\frac{\partial J}{\partial \Lambda^*} + \mathbf{F}^* \circ \left(\mathbf{W}^{H} \frac{\partial J}{\partial \mathbf{W}^*} \right) \right) \mathbf{W}^{H}$$

$$- \mathbf{W}^{-H} \left(\mathbf{F}^* \circ \mathbf{W}^{H} \mathbf{W} \left(\operatorname{Re} \left\{ \mathbf{W}^{H} \frac{\partial J}{\partial \mathbf{W}^*} \right\} \circ \mathbf{I} \right) \right) \mathbf{W}^{H}$$
with $F_{ij} = (\lambda_j - \lambda_i)^{-1} \forall_{i \neq j}$ and $F_{ii} = 0$

Results

- different pre-training configurations:
 - kept fixed during joint training.
 - trained jointly.
 - can be adjusted during joint training.

Training		Dev		Test	
BF	AM	real	simu	real	simu
BFIT+Kaldi		5.76	6.77	11.51	10.90
BFIT+WRN		5.53	6.67	9.44	10.18
fixed	fixed	4.26	4.29	5.85	4.59
scratch	scratch	5.51	5.19	8.76	5.61
scratch	finetune	4.14	4.09	5.86	4.06
fixed	finetune	4.09	3.96	5.56	3.9
finetune	finetune	3.77	3.89	5.42	3.95

Computer Science, Electrical Engineering and Mathematics Communications Engineering Prof. Dr.-Ing. Reinhold Häb-Umba

System was evaluated on the CHiME 4 dataset with

Fixed: Model pre-trained separately. The parameters are

Scratch: Model parameters initialized randomly and the

Finetune: Model pre-trained separately. The parameters

Work supported by DFG under contract no. Ha3455/11-1