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ABSTRACT

This paper presents an end-to-end training approach for a
beamformer-supported multi-channel ASR system. A neural
network which estimates masks for a statistically optimum
beamformer is jointly trained with a network for acoustic
modeling. To update its parameters, we propagate the gra-
dients from the acoustic model all the way through feature
extraction and the complex valued beamforming operation.
Besides avoiding a mismatch between the front-end and the
back-end, this approach also eliminates the need for stereo
data, i.e., the parallel availability of clean and noisy versions
of the signals. Instead, it can be trained with real noisy multi-
channel data only. Also, relying on the signal statistics for
beamforming, the approach makes no assumptions on the
configuration of the microphone array. We further observe
a performance gain through joint training in terms of word
error rate in an evaluation of the system on the CHiME 4
dataset.

Index Terms— Robust ASR, Multi-Channel ASR, Acous-
tic beamforming, Complex backpropagation

1. INTRODUCTION

The classical approach for mutlti-channel Automatic Speech
Recognition (ASR) is statistically optimum beamforming.
Using optimization criteria such as the maximization of the
output SNR or the Minimum Variance Distortionless Re-
sponse (MVDR) criterion, an enhanced signal can be pro-
duced which is then input to an ASR backend.

With the success of deep neural networks for acoustic
modeling it has been proposed to train a large network with
the multi-channel data at its input to predict the context-
dependent phoneme state, thus eliminating an explicit beam-
forming stage and letting the neural network figure out the
best mapping of the multi-channel input to the state poste-
riors. Variants of this approach include stacking the input
signals to obtain a representation in the feature domain (e.g.
[1]). Due to the loss of the phase during the preprocessing

step these approaches are hardly en par with regular beam-
forming systems. Others use the raw waveforms directly as
input [2, 3, 4]. An undisputed advantage of this approach is
that the network is trained with a criterion, such as Cross-
Entropy (CE), which is known to be appropriate for ASR.
However, a significant drawback is that the computational
complexity is enormous and that large amounts of training
data are required to achieve good results. Additionally, these
models are bound to a certain number of look directions
which are learned by the filters.

Recently we have proposed an alternative which is com-
putationally much more parsimonious and independent of the
microphone configuration. This approach combines a neu-
ral network mask estimator with a Generalized Eigenvalue
(GEV) beamformer and achieved very competitive results in
the 4-th CHiME challenge [5]. It has, however, a few draw-
backs:

1. We need target masks in order to train the mask estima-
tion network. Stereo data or at least clean speech data
is required to generate those targets. This data is much
more difficult to collect than noisy data and thus may
not be available for many applications. This also means
that the mask estimator can only be trained using sim-
ulated data which may have some mismatch compared
to the real test data.

2. The target masks themselves are heuristic to some ex-
tent and merely a very distant proxy for the final ob-
jective of high word recognition rate. Manual opti-
mization, e.g., of the threshold below which a time-
frequency bin is declared to contain noise only, is re-
quired to achieve the best results.

3. The beamforming front-end and the acoustic model are
completely separate systems and thus optimized sep-
arately. We cannot utilize any information from the
acoustic model to improve the mask estimator.

In this paper, we are going to overcome those drawbacks by
jointly optimizing the front-end and the back-end under a
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Fig. 1: Overview of the system. Gradients are propagated from the output to the mask estimation network. Bold lines are
complex valued signals. Gray blocks operate in the complex domain.

common objective function in an end-to-end training. To this
end, we backpropagate gradients from the acoustic model
all the way back to the mask estimation stage. While the
crucial step of propagating the gradient through the GEV
beamformer is detailed in a companion paper [6], this paper
focuses on describing the overall processing chain and show-
ing the effectiveness of the approach in terms of recognition
performance.

While the idea of optimizing the beamformer w.r.t. an
ASR back-end related criterion is not new (e.g. [7]), this is
the first to combine statistically optimum beamforming with
an end-to-end trained system of neural networks without the
need for any additional information like the generalized cross
correlation (GCC) [8].

2. MULTI-CHANNEL ASR

Fig. 1 gives an overview of the system considered in this pa-
per. The multi-channel input consists of D microphone sig-
nals, to each of which the short-time Discrete Fourier Trans-
form (STFT) is applied. The resulting D components are
gathered in a vector Yf,t, where t is the time frame and f
the frequency bin index, which consists of a speech compo-
nent Xf,t and a noise component Nf,t:

Yf,t = Xf,t + Nf,t. (1)

The goal of the acoustic front-end is to remove, or at least sup-
press the noise by means of an acoustic beamformer. This is
done by multiplying the observed signal with a beamforming
vector wf

Ŝf,t = wH
f ·Yf,t. (2)

where Ŝf,t is either an estimate of the speech component as
observed at a reference microphone (e.g. microphone #1) or
an estimate of the speech signal at the signal source, depend-
ing on how exactly the beamforming criterion is defined.

Statistically optimum beamformers, such as the MVDR
beamformer or the GEV beamformer, need the knowledge of
the power spectral density matrices of speech, ΦXX, and of

noise, ΦNN, to compute the beamforming coefficient vector
wf . As depicted in Fig. 1 these Cross-Power Spectral Density
(PSD) matrices are computed by placing masks on the input
signal, where the masks are estimated by a neural network.
The mask estimation is carried out on each channel separately,
and the D masks are joined to a single mask by means of
mean or median operation.

The back-end operates on the enhanced signal and con-
sists of a feature extraction stage, a neural network to estimate
the acoustic model probabilities and the decoder to infer the
spoken word sequence.

The goal of this work is to jointly optimize the overall sys-
tem using a common objective function to achieve best pos-
sible ASR performance. The objective function is the com-
monly used CE between the context-dependent state labels
predicted by the acoustic model neural network and the target
state labels. In particular we would like to train the front-end
neural network for mask estimation with the very same ob-
jective function. To be able to do so, we need to compute
the gradient of the objective function w.r.t. the parameters of
the mask estimator. This requires propagating the gradient
through the complete processing chain depicted in Fig. 1.

In the following we discuss the individual processing
blocks and the involved computations, starting from the end
of the processing chain.

3. ERROR BACKPROPAGATION

3.1. Acoustic Model

Our acoustic model is based on a Wide Residual Network
(WRN) [9] and is a smaller version of the one described in
detail in [5].

As a trade off between modeling capacity and training
time we choose a depth (d) of 10, a width (k) of 5 and dis-
missed the recurrent layers. The model operates on the whole
utterance instead of a window of a few frames. This helps
with the Batch-Normalization [5] and makes it easier to in-
tegrate the mask estimator which also operates on a whole
utterance.



The training of the model is carried out according to stan-
dard error backpropagation procedures, and therefore need no
further discussion.

3.2. Feature Extraction

Our acoustic model works with 80 dimensional log-mel fil-
terbank features with their delta and delta-deltas. To connect
the beamforming model with the acoustic model, we model
the feature extraction using basic building blocks of neural
networks. To compute the delta and delta-delta features we
use a one dimensional convolution layer with filter size 5 and
9 respectively with a corresponding initialization. To apply
the filterbank we use a linear layer with no bias and a fixed
matrix reassembling the filter banks. For these standard oper-
ations the gradient computation is again straightforward.

3.3. Acoustic Beamformer

In earlier work we have shown that the GEV beamformer [10]
is particularly suitable for use with an ASR backend, result-
ing in consistently better recognition results than a MVDR
beamformer [11].

Its objective is to maximize the a posteriori signal-to-
noise ratio (SNR):

wGEV
f = argmax

wf

wH
f ΦXXfwf

wH
f ΦNNfwf

(3)

Solving (3) leads to the Generalized Eigenvalue problem

ΦXXW = ΦNNWΛ, (4)

where the desired beamforming vector wf is given by the
eigenvector corresponding to the largest eigenvalue. W is
a matrix, whose columns are the eigenvectors, and Λ is the
diagonal matrix of eigenvalues. Since the GEV beamformer
can introduce arbitrary distortion, we use Blind Analytic Nor-
malization (BAN) as a post-filter [10].

While the backpropagation of the gradient through the
BAN operation is relatively easy, the most crucial step is the
derivative of the eigenvalue problem w.r.t. the speech and
noise PSDs. Note that the beamforming vector is complex-
valued, and thus the complex gradient is given by [12]

∇Φ∗ =

(
(∇W∗)

∗ ∂W

∂Φ∗ +∇W∗

(
∂W

∂Φ

)∗)
. (5)

In a companion paper we have submitted to this confer-
ence we have shown that the derivative of some real-valued
cost function J w.r.t. Φ∗ of an Eigenvalue Problem can be
expressed as [13] [14] [6]

∂J

∂Φ∗ = W- H

[
∂J

∂Λ∗ + F∗ ◦WH ∂J

∂W∗

]
WH. (6)

This equation holds if subsequent calculations do not de-
pend on the magnitude of the eigenvectors and if Φ is her-
mitian. For the GEV beamformer however, we have Φ =
Φ−1

NNΦXX and Φ is not hermitian. To solve this problem we
normalize the eigenvectors to have a magnitude of one. This
removes the degree of freedom from the eigendecomposition.
Including this normalization results in the following gradient:

∂J

∂Φ∗ = W- H

(
∂J

∂Λ∗ + F∗ ◦
(

WH ∂J

∂W∗

))
WH

−W- H

(
F∗ ◦WHW

(
Re

{
WH ∂J

∂W∗

}
◦ I

))
WH.

For a complete derivation we again refer the reader to [6]
and to our technical report [14].

3.4. PSD Computation

We estimate the covariance matrices in Eq. 4 using a mask-
ing based approach where the masks Mν

f,t are estimated by a
neural network and ν ∈ {X,N}:

Φννf =

T∑
t=1

Mν
f,tYf,tY

H
f,t. (7)

The computation of the derivative of the PSD matrices
w.r.t. the masks is straightforward.

3.5. Mask estimation

The mask estimator network is the same as in our previous
works [11, 15]. It consists of one bi-directional Long Short-
Term Memory (BLSTM) layer and three feed-forward layers.

The estimator outputs the masks for the target as well as
the one for the noise given the magnitude spectrum of one
microphone at its input. Each microphone is treated indepen-
dently but with the same network parameters. This allows
us to stay independent of the microphone configuration. The
beamforming operation works better when the same mask
is used for each channel [16]. To condense the masks into
one, we use median pooling during decoding and mean dur-
ing training. The median is resistant to a channel failure, but
its gradient is sparse and not always well defined which lead
us to use the mean at training time. This also more closely
reassembles our previous approach where each channel gets a
gradient from an ideal binary mask.

One major difference compared to our previous contri-
butions are the different parameters used for the Short Time
Fourier Transform (STFT) transformation. Instead of using a
window size of 1024 and a shift of 256 we use a window size
of 400 and a shift of 160. These parameters are common for
speech recognition, so choosing them avoids transformations
between the beamformer and the acoustic model. Preliminary
experiments showed that the different transformation does not
have an impact on the performance.



4. EXPERIMENTS

4.1. Database

The dataset from the 4th CHiME challenge [17] is used for
all of our experiments. It features real and simulated audio
data of prompts taken from the 5k WSJ0-Corpus [18] with
4 different types of real-world background noise. We only
consider the multi-channel track with six channels here.

4.2. Setups

The 4th CHiME challenge provides a baseline system which
uses BeamformIt! [19] in the front-end, a DNN-HMM acous-
tic model trained with sMBR and a combination of a 5-gram
Kneser-Ney and recurrent neural network language model
[17] (BFIT+Kaldi). Alignments from this system are used for
all subsequent trainings. The decoding pipeline is the same
for all experiments. We train the WRN acoustic model on all
six noisy channels to replace the DNN-HMM model and a
mask estimator with ideal binary masks as described in [11]
and replace BeamformIt! with the GEV beamformer. These
three results serve as a baseline.

We aim to answer the following questions: Can end-to-
end training reduce the mismatch of a combined system? Can
we train a mask estimator without parallel clean and noisy
data? And can we even train the system from scratch? To an-
swer these questions, we vary which component we initialize
randomly (scratch) and which we initialize with the respective
pre-trained model (finetune/fixed). We then train the system
using the backpropagation described in the previous section.

For training we use ADAM [20] with α = 10−5. Dropout
with p = 0.5 and an L2 regularization of 10−6 is used in
each layer. We also employ Batch-Normalization [21] in each
layer. This helped to improve performance as well as conver-
gence speed in our previous works1.

4.3. Results

The results of our experiments are displayed in Tab. 1. They
show that our down-sized acoustic model performs as good
as the baseline acoustic model and even somewhat better on
the real test set (2nd results line). Replacing BeamformIt!
with the GEV beamformer with a pre-trained mask estimator
(”fixed”) leads to a significant gain (3rd results line).

Simultaneously finetuning the mask estimator and the
acoustic model provides the best overall performance (last
results line). The gain compared to just finetuning the acous-
tic model on the beamformed data is small (2nd last to last
line). This shows that the mismatch between the front-end
trained on simulated data and the back end finetuned on real
noisy recordings is small for this dataset, because not much
is gained by finetuning the mask estimator on the real data.

1Due to computational limitations we were unable to do an extensive hy-
perparameter search and thus relied on experience from previous works.

Table 1: Average WER (%) for the described systems.

Training Dev Test

BF AM real simu real simu

BFIT+Kaldi 5.76 6.77 11.51 10.90
BFIT+WRN 5.53 6.67 9.44 10.18

fixed fixed 4.26 4.29 5.85 4.59
scratch scratch 5.51 5.19 8.76 5.61
scratch finetune 4.14 4.09 5.86 4.06
fixed finetune 4.09 3.96 5.56 3.9

finetune finetune 3.77 3.89 5.42 3.95

The table also shows that if we initialize the mask estimator
randomly we can get slightly better results than by just com-
bining both pre-trained models. This result, which can be
found on the 3rd to last line of the table, is the most important
outcome of this study, because it shows that we indeed were
able to eliminate the need for any parallel clean and noisy
data for mask estimation and achieve even slightly better
performance by the proposed end-to-end training.

If we train the whole model completely from scratch the
results get worse. We see two reasons for this. First, the
hyper-parameters might not be optimal for this setting as
jointly learning to classify the state posteriors and the mask
estimation for an optimal look direction is a hard task for the
model. Second, the amount of training data for the acoustic
model is only one sixth of the data compared to using each
channel separately. This has already been shown to lead to
decreased performance [22]. Nevertheless, this model still
performs better than the baseline model or the pre-trained
acoustic model combined with BeamformIt!.

5. CONCLUSION & OUTLOOK

This work describes a system where the beamformer front-
end is jointly trained with the acoustic model using the CE
criterion. Relying on statistical beamforming, this system is
independent of the array geometry. We show that such a sys-
tem is able to further improve performance compared to just
combining both components without joint training. Most im-
portantly it eliminates the need for parallel clean and noisy
data as well as heuristic hand-tuned masks to train the mask
estimator. In future work we will focus on improving the per-
formance of the model trained from scratch.
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