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ABSTRACT
In this paper we show how a neural network for spectral mask es-
timation for an acoustic beamformer can be optimized by algorith-
mic differentiation. Using the beamformer output SNR as the ob-
jective function to maximize, the gradient is propagated through the
beamformer all the way to the neural network which provides the
clean speech and noise masks from which the beamformer coeffi-
cients are estimated by eigenvalue decomposition. A key theoretical
result is the derivative of an eigenvalue problem involving complex-
valued eigenvectors. Experimental results on the CHiME-3 chal-
lenge database demonstrate the effectiveness of the approach. The
tools developed in this paper are a key component for an end-to-end
optimization of speech enhancement and speech recognition.

Index Terms— Acoustic Beamforming, Deep Neural Network,
Complex-Valued Algorithmic Differentiation, Generalized Eigen-
value Problem

1. INTRODUCTION

While neural networks (NNs) have become state-of-the-art in auto-
matic speech recognition (ASR), they are more recently also making
inroads in speech enhancement. In particular, it has been shown that
a NN is very effective at estimating the masks by which the speech
and noise power spectral density (PSD) matrices can be computed
from the noisy input signal [1, 2, 3]. The beamforming coefficients
are then computed from those PSD matrices. Such a hybrid front-
end incorporating both neural-network and model based elements
was able to significantly improve the performance of a strong ASR
backend, which involved a deep neural network (DNN) for acoustic
modeling.

However, it is somewhat awkward that such a system involves
two networks, one for mask estimation and one for acoustic mod-
eling, with differing objective functions: the cross entropy between
an ideal binary mask and the network output for the first and the
cross entropy between the context-dependent phoneme state and its
prediction by the network for the latter. An alternative to this is a
deep network for acoustic modeling with multi-channel raw speech
at its input. It had been shown that such a large network was in-
deed able to take advantage of the multi-channel input and learn the
desired spatial selectivity [4]. A drawback of that approach, how-
ever, is that it needs large amounts of data and long training times
until convergence. Further, one might argue why the network must
learn beamforming operations from data if there exists a decades old
theory of optimal beamforming.

The approach taken in this paper is therefore different: we stick
to the model-based approach and employ a NN for mask estimation,
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however the network is optimized w.r.t. to a criterion which is closer
to the ultimate goal than the former used criterion on mask purity. In
our case this ultimate goal is related to speech enhancement (the out-
put SNR), while we leave the optimization w.r.t. the same criterion
as the NN for acoustic modeling for a companion paper [5].

To be specific, we are going to compute the gradient of the out-
put SNR w.r.t. the weights of the NN for mask estimation. This
is achieved by means of algorithmic differentiation (AD). In AD a
function is decomposed into a series of elementary operations, and
for each of these elementary operations a function is implemented
which computes its gradient w.r.t. to the desired quantity [6, 7]. In
our application this decomposition involves as the most crucial step,
the derivative of an eigenvalue problem involving complex-valued
eigenvectors. Its solution, which, to the best of our knowledge, is
presented here for the first time, is perhaps the theoretically most
valuable result of this paper.

The work presented here combines the work of [3, 8, 9] and uses
the framework [6]. In [8] complex-valued neuronal networks are pre-
sented, especially the complex-valued chain rule. This rule is used
to extend the real-valued ”forward and reverse mode algorithmic dif-
ferentiation” [9] to complex-valued matrices. The derivation for the
gradient of the eigendecomposition from [9] is generalized to the
complex-valued problem. Also an extended form is presented which
is required when the following calculations depend on the magni-
tude of the eigenvectors. Thereby the objective function of the NN
from [3] is replaced to train a NN optimized w.r.t. a SNR criterion.
This approach improves previous configurations in terms of speech
quality.

In the next section we describe our NN supported system for
acoustic beamforming. Then we recapitulate some basics on op-
timization of a real-valued objective function which depends on
complex-valued vectors in Section 3. Section 4 sketches the key
step of algorithmic differentiation mentioned earlier, and Section
5 presents experimental results on the CHiME-3 challenge dataset
demonstrating the effectiveness of our approach. Conclusions are
drawn in Section 6.

2. MODEL

We consider an array of D microphones, which receives a noisy
speech signal

Yf,t = Xf,t + Nf,t, (1)

where Yf,t, Xf,t and Nf,t are the short-time Fourier transforms
(STFT) of noisy speech, clean speech and noise at frequency bin
f and time frame t, respectively. Our goal is to recover the clean
speech image Xf,t,1, i.e., the clean speech signal as observed by the
first microphone, via acoustic beamforming [10, Ch. 10]:

X̂f,t,1 = wH
f Yf,t, (2)
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Fig. 1: Block diagram of the described system

where wf is the beamformer coefficient vector, which is assumed to
be time-invariant.

Fig. 1 gives an overview of the considered NN supported acous-
tic beamformer for speech enhancement [2].

The NN is applied to each microphone channel separately to
estimate a speech and a noise mask M (X)

f,t,d and M (N)
f,t,d, respectively.

TheD speech and noise masks are averaged to a single speech and a
single noise mask, and the masks are used to obtain estimates of the
speech and noise PSD matrices:

Φννf =

∑T
ť=1

(∑D
d=1 M

(ν)

f,ť,d

)
Yf,ťY

H
f,ť∑T

ť=1

(∑D
d=1 M

(ν)

f,ť,d

) , (3)

where ν ∈ {X,N} and where (·)H denotes the conjugate trans-
pose. Once these PSD matrices are given, several statistically op-
timal beamformers can be computed. In this paper the minimum
variance distortionless response (MVDR) beamformer and the gen-
eralized eigenvector (GEV) beamformer with an optional distortion
reduction filter [11] are considered. For the latter the beamforming
coefficients are then obtained by solving the GEV problem

ΦXXfWf = ΦNNfWfΛf (4)

with Wf and Λf being the matrix of eigenvectors and the diago-
nal matrix of eigenvalues, respectively. The beamforming vector is
given by the eigenvector with the largest eigenvalue [11]

wf = P(ΦXXf ,ΦNNf ). (5)

Our goal is to derive update rules for the parameters of the NN such
that an objective function computed from the beamformer output is
optimized. Here we choose the negative SNR of the normalized
beamformer output signal as our objective function to minimize:

J = −10 log10

P (X)

P (N)
. (6)

The power of the beamformed speech and noise signal is calculated
via the estimated beamforming vector which is applied to the nor-
malized clean speech and noise signals:

ν
(Norm)
f,t =

νf,t√∑T
ť=1

∣∣∣∣νf,ť∣∣∣∣2 ,
ν

(Beam)
f,t = wH

f ν
(Norm)
f,t ,

P (ν) =
T∑
t=1

F∑
f=1

|ν(Beam)
f,t |2

T
,

(7)

where ν ∈ {X,N} and where T and F are the total number of
frames and frequency bins, respectively. The normalization ensures
that every frequency contributes equally strong to the objective.

Note that the objective function J is (of course) real-valued,
while its computation from the input signal involves complex-valued
quantities. For error backpropagation we thus need to compute
complex-valued gradients. In the next section we recapitulate how
this can be done.

3. COMPLEX-VALUED BACKPROPAGATION

To derive the basic math rules for complex-valued gradients, we con-
sider a chain of two functions:

J = f(s) where s = σ + jω,

s = g(z) where z = x+ jy,

s, z ∈ C, J, σ, ω, x, y ∈ R
(8)

and show how the partial derivative of J w.r.t. x and y can be com-
puted.

It is possible to reformulate each operation as a real-valued op-
eration on the real and imaginary part separately. Instead we want
to define a complex derivative w.r.t. z∗ (where (·)∗ is the complex
conjugate) under the assumption that the objective function is real-
valued. In [12, Eq. 6] it is defined as

∂J

∂z∗
=

1

2

(
∂J

∂x
+ j

∂J

∂y

)
, (9)

which is known as the Wirtinger calculus.
The chain rule for complex functions can be derived by inserting

the multivariable real-valued chain rule [13, p. 393]

∂J

∂x
=
∂J

∂σ

∂σ

∂x
+
∂J

∂ω

∂ω

∂x
(10)

in (9), which leads to

∂J

∂z∗
=

1

2

(
∂J

∂σ

∂σ

∂x
+
∂J

∂ω

∂ω

∂x
+ j

∂J

∂σ

∂σ

∂y
+ j

∂J

∂ω

∂ω

∂y

)
= · · · =

(
∂J

∂s∗

)∗
∂s

∂z∗
+
∂J

∂s∗

(
∂s

∂z

)∗
. (11)

This equation is the scalar version of [8, Eq. 7]. The extension of
this chain rule to a matrix S as an intermediate variable is

∂J

∂z∗
=
∑
n,m

((
∂J

∂S∗n,m

)∗
∂Sn,m
∂z∗

+
∂J

∂S∗n,m

(
∂Sn,m
∂z

)∗)

= Tr

((
∂J

∂S∗

)H
∂S

∂z∗
+

(
∂J

∂S∗

)T(
∂S

∂z

)∗)
, (12)

where Sn,m is the element on the n-th row and m-th column of
matrix S, (·)T denotes the transpose and Tr(·) is the sum of the
diagonal matrix elements. Here, ∂J

∂S∗ and ∂S
∂z∗ are matrices with the

derivative of J w.r.t. each element of S∗ and the derivative for each
element of S w.r.t. z∗, respectively. Both matrices have same shape
as S. This equation is the generalization of the real-valued equation
in [9].

In the special case, that the function g is independent of y the
gradient w.r.t y is zero and (12) simplifies to

∂J

∂z∗
= <

{(
∂J

∂S∗

)∗
∂S

∂z∗
+

∂J

∂S∗

(
∂S

∂z

)∗}
, (13)

where <{·} is the real part. Note that the gradient is real-valued as
expected. This is the case for our problem, where the neural network
is real-valued.
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4. DERIVATIVE OF EIGENVALUE DECOMPOSITION

4.1. Forward and Backward Mode AD

The crucial step in the chain of derivatives when computing the gra-
dient of the objective function w.r.t. the NN parameters is the eigen-
value problem

ΦW = WΛ. (14)

The following derivation is similar to the real-valued case discussed
in [9].

According to the standard procedure in AD, we first consider
forward mode AD, which starts at the beginning and differentiates
each step of the computation [9]. We consider the derivative of (14)
w.r.t. a complex scalar ζ ∈ {z, z∗}:

∂Φ

∂ζ
W + Φ

∂W

∂ζ
=
∂W

∂ζ
Λ + W

∂Λ

∂ζ
(15)

W−1 ∂Φ

∂ζ
W − ∂Λ

∂ζ
= W−1 ∂W

∂ζ
Λ−W−1Φ

∂W

∂ζ
, (16)

from which the following derivatives can be obtained (we have to
skip the intermediate steps due to space limitations, the full deriva-
tion can be found at [14]):

∂Λ

∂ζ
= I ◦

(
W−1 ∂Φ

∂ζ
W

)
. (17)

and

∂W

∂ζ
= W

(
F ◦
(

W−1 ∂Φ

∂ζ
W

))
. (18)

Here I is the identity matrix, ◦ denotes the Hadamard product (where
(A ◦B)ij = AijBij), andFij = 1/(λj−λi) for i 6= j andFii = 0.

For the computation of the error backpropagation we need the
reverse mode AD, though, i.e. we have to work backwards through
the sequence of computational steps originally used to compute the
scalar output from the input. In our case this refers to computing the
derivative of the objective function w.r.t. the PSD matrices.

Using (12) we have

∂J

∂z∗
= Tr

((
∂J

∂Φ∗

)H
∂Φ

∂z∗

)
+Tr

((
∂J

∂Φ∗

)H
∂Φ

∂z

)∗
. (19)

In this particular case it is sufficient to consider only the first term
because a closer investigation reveals that the differentiation w.r.t. z
leads to the same solution. We therefore leave out the second and
focus on the first term

∂J

∂z∗
= Tr

((
∂J

∂Φ∗

)H
∂Φ

∂z∗

)
+ . . . , (20)

where the dots indicate the disregarded differentiation w.r.t. z. Also
(12) can be used with two intermediate matrices, which leads to

∂J

∂z∗
= Tr

((
∂J

∂W∗

)H
∂W

∂z∗
+

(
∂J

∂Λ∗

)H
∂Λ

∂z∗

)
+ . . . , (21)

whose terms can be expressed via the forward mode differentiations
(17) and (18). To calculate ∂J

∂Φ∗ we compare the coefficients of (20)

with those of (21), which eventually delivers (again, the reader is
referred to [14] for details):

∂J

∂Φ∗
=

(
W

(((
∂J

∂W∗

)H

W

)
◦FT +

(
∂J

∂Λ∗

)H
)

W−1

)H

= W−H

(
∂J

∂Λ∗
+ F∗ ◦

(
WH ∂J

∂W∗

))
WH (22)

where (·)−H denotes the inverse of the conjugate transpose. This
is the reverse mode gradient of the eigendecomposition. The real-
valued version of this equation can be found in [9].

4.2. Extension of the gradient

The eigendecomposition has a degree of freedom for choosing the
magnitude of the eigenvectors. Many numerical implementations
(including eig of the numpy package) set the magnitude to one.
To consider this in the backward step we use the normalization for
vectors

a =
w√

wHw
, (23)

∂J

∂w∗
=

∂J
∂a∗ −w

<{wH ∂J
∂a∗ }

wHw√
wHw

, (24)

where w has already the magnitude one, which simplifies the equa-
tion to:

∂J

∂w∗
=

∂J

∂a∗
−w<

{
wH ∂J

∂a∗

}
. (25)

The extension to all eigenvectors W = [w1, . . . ,wN ] leads to

∂J

∂W∗ =
∂J

∂A∗
−W

(
<
{

WH ∂J

∂A∗

}
◦ I

)
, (26)

and the complete gradient of the eigendecomposition is

∂J

∂Φ∗
= W−H

(
∂J

∂Λ∗
+ F∗ ◦

(
WH ∂J

∂W∗

))
WH

−W−H

(
F∗ ◦

(
WHW

(
<
{

WH ∂J

∂W∗

}
◦ I

)))
WH.

(27)

This extension of the gradient is only required if the following cal-
culations depend on the magnitude of the eigenvectors and Φ is not
a hermitian matrix.

4.3. Verification of the derivatives

For the verification of (22) it can be shown that the gradient is not
affected by the identity equation

Λ,W = eig(φ), (28)

φ̃ = WΛW−1, (29)

for an arbitrary matrix φ and backward gradient ∂J

∂φ̃
∗ . Since this

identity is not sensitive to a change of the eigenvectors magnitude
the extension of the gradient is not required.

The test of the extended gradient in (27) is done numerically by
calculating the gradient of

Λ, [w1, . . . ,wN ] = eig(φ), (30)

w̃n = wne
−j∠wn,1 for n ∈ {1, . . . , N}. (31)
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Table 1: Configuration of the neural network

Units Type Non-Linearity pdropout

L1 256 BLSTM Tanh 0.5

L2 513 FF ReLU 0.5

L3 513 FF ReLU 0.5

L4 1026 FF Sigmoid 0.0

The second equation ensures the invariance w.r.t. an absolute phase
of the eigenvectors which is necessary for a numerical verification.
This test is only successful for the extended gradient.

4.4. GEV beamformer

We now apply the above results to the generalized eigenvalue prob-
lem (4). Assuming that the inverse of ΦNNf exists, the generalized
eigenvalue problem can be rewritten as a special eigenvalue problem

ΦNN
−1
f ΦXXfWf = WfΛf . (32)

With the backward gradient of the matrix inverse product [9]

Φf = ΦNN
−1
f ΦXXf , (33)

∂J

∂ΦXX
∗
f

= ΦNN
−H
f

∂J

∂Φ∗f
, (34)

∂J

∂ΦNN
∗
f

= − ∂J

∂ΦXX
∗
f

ΦH
f , (35)

we can obtain the gradient of the generalized eigenvalue problem.

4.5. MVDR beamformer

The coefficients of the MVDR beamformer are given by

w
(MVDR)
f =

ΦNN
−1
f w

(PCA)
f

w
(PCA)
f

HΦNN
−1
f w

(PCA)
f

, (36)

where w
(PCA)
f = P(ΦXXf , I), i.e., the eigenvector corresponding

to the largest eigenvalue (see (5)). The forward and backward mode
AD involves only standard operations. The formulas for the real-
valued case found in [9] can be transformed to the complex-valued
case needed here using the definitions of section 3 above.

5. EVALUATION

We tested our approach on the CHiME-3 dataset [15]. The NN
for mask estimation has four hidden layers, a bi-directional long
short-term memory (BLSTM) layer followed by three fully con-
nected feedforward (FF) layers, see Table 1.

The network was trained on the simulated training set (tr05 simu
with 7138 utterances) using dt05 simu with 1640 utterances for
cross validation. Evaluation was also conducted on the simulated
data, because the separated speech and noise signals were needed
to compute the PESQ score, which was used for performance eval-
uation, in addition to the SNR gain. The perceptual evaluation
of speech quality [16] (PESQ) value on the MOS-LQO scale is
calculated for wideband signals.

Table 2: Overview of the results for different system configurations.
The first row shows the scores of the input noisy signal.

mask

source

eval.

beamf.

post

filter
PESQ SNR

- - - 1.21 3.85

Oracle [3] GEV
- 1.73 15.35

BAN 1.76 18.02

[3] GEV
- 1.64 14.08

BAN 1.70 16.03

NN-GEV GEV
- 1.71 14.59

BAN 1.75 16.05

NN-MVDR

MVDR
- 1.43 10.58

|| · ||2 1.60 13.84

GEV
- 1.60 14.21

BAN 1.50 14.51

Table 2 shows the results for different training scenarios, beam-
former configurations and post filters. The blind analytic normal-
ization (BAN) post filter is defined in [11] and || · ||2 indicates the
normalization to unit length. In the first column the training con-
figuration of the NN is denoted, while column two stated the beam-
former used for evaluation. Both can be different since the NN only
estimates the spectral masks and not the beamfoming vector directly.

Using the same GEV beamformer and NN architecture as in [3],
however replacing the previously used objective function on mask
purity with the SNR criterion derived here, is able to achieve a gain
in PESQ and SNR (lines denoted by NN-GEV). The PESQ score
reaches nearly the value of the oracle masks from [3], while the gap
for the SNR is clearly larger. On the other hand the MVDR NN,
which does not require the extended gradient from (27), is not able
to produce a gain, irrespective of which beamformer is used for eval-
uation. Similar to [3], the normalizing post filter BAN improves the
results for nearly all configurations.

We also experimented with pre-training the network with the
objective function in [3] and then continuing with the SNR criterion,
but this resulted in no further improvement.

6. CONCLUSIONS AND OUTLOOK

Using algorithmic differentiation this paper shows how a NN for
mask estimation can be trained to optimize an objective function re-
lated to the beamformer output signals. As a key theoretical result
we derived the complex gradient for an eigendecomposition. While
the improvements in PESQ and SNR compared to an earlier mask-
purity related criterion are not tremendous, the main contribution of
this paper is that it paves the way for an end-to-end training of a sys-
tem composed of a single channel speech/noise estimation network,
a multichannel beamformer and an ASR network that can be jointly
optimized w.r.t. the same criterion.
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