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Introduction
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» Source: TUT-SED Synthetic 2016 [1], 566 minutes,
clean, 16 events € alarms and sirens, baby crying,

> Finetune All: all layers finetuned

Conclusions & Outlook

bird singing, bus, cat meowing, crowd applause, etc.

» Target: TUT-SED Real 2016 [2], 78 minutes, noisy, 17
events € bird singing, car passing by, cutlery, washing
dishes, alarms, mixer, rain, etc.

* Initial hypothesis could only partially be verified
* Probable cause: source DB too small
e Qutlook: use Google Audioset as source DB
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