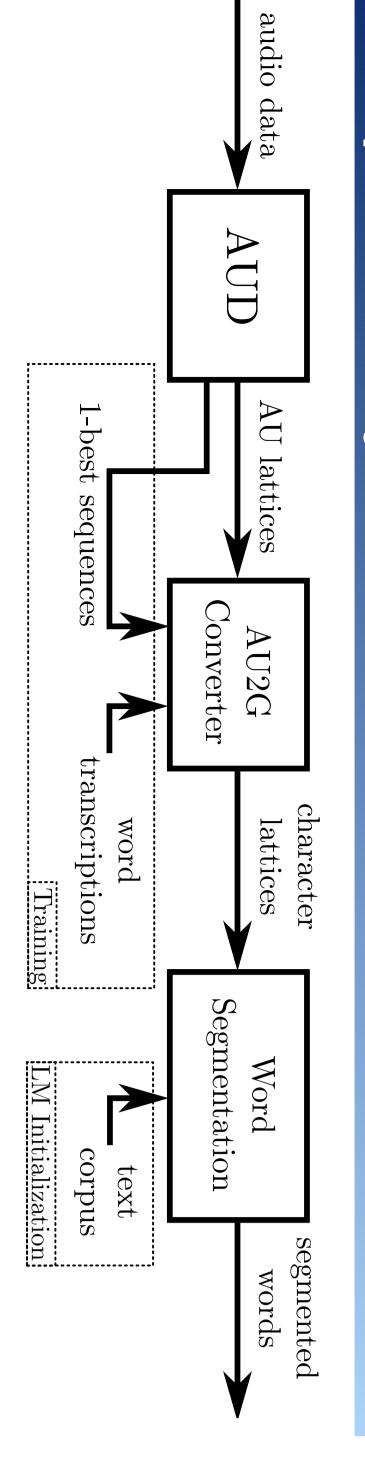


Text Data for Word Segmentation for Underresourced anguag PS PS

Thomas Glarner¹, Benedikt Boenningh ¹Paderborn University, Germany Benedikt Boenninghoff², Oliver Walter¹
University, Germany ²Ruhr-Universi Jniversität Bochum, Germany Reinhold Haeb-Umbach¹,

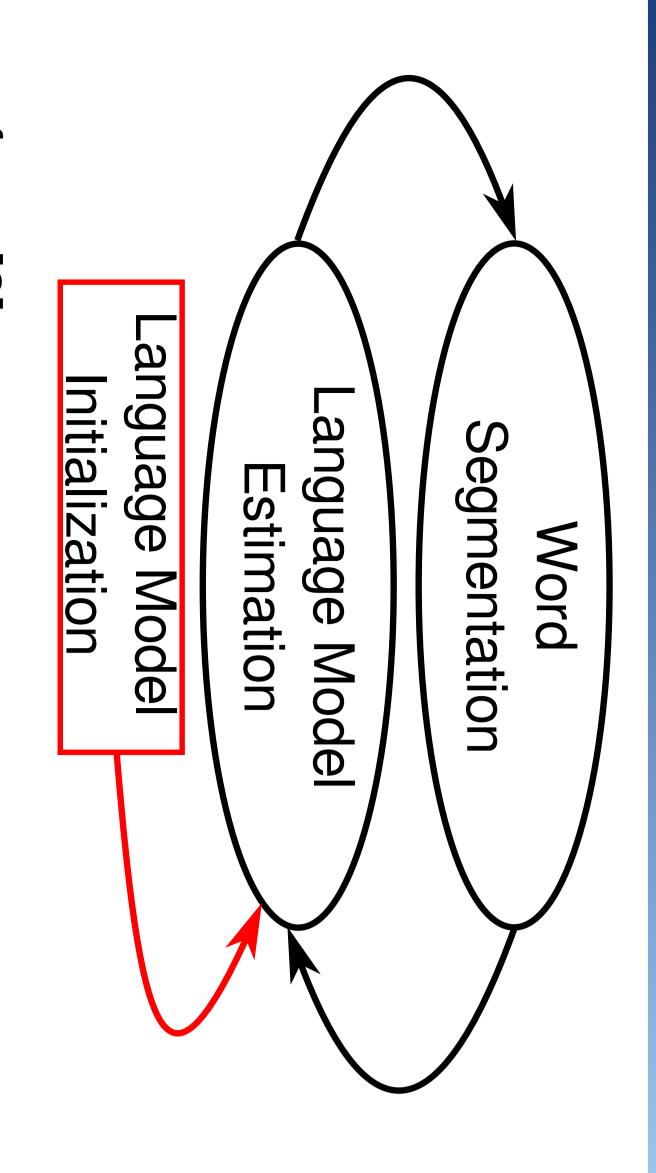
{glarner, walter, haeb}@nt.uni-paderborn.de, http://nt.uni-paderborn.de benedikt.boenninghoff@rub.de, https://www.ruhr-uni-bochum.de/ika/

Introduction


- underresourced languages: Common situation in speech recognition for
- No pronunciation dictionary or detailed annotations
- unknown phonemic inventory
- Word-level transcript available for some speech recordings
- Some unrelated textual data available

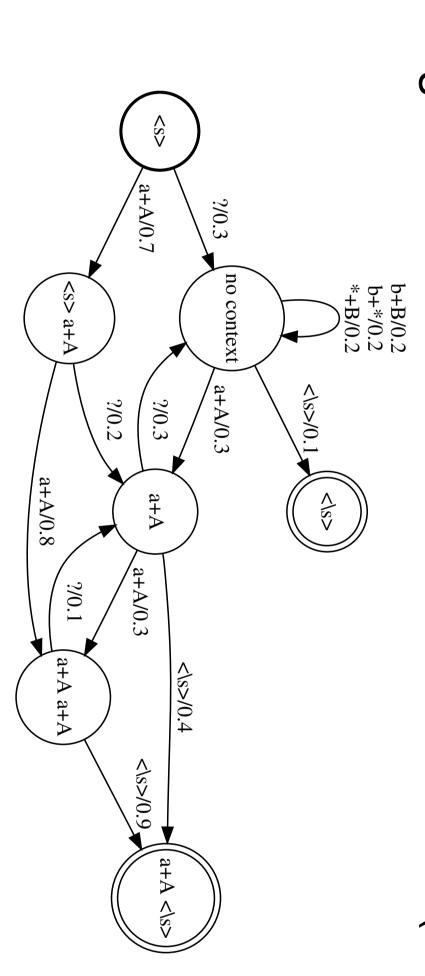
How to connect automatically learned phone

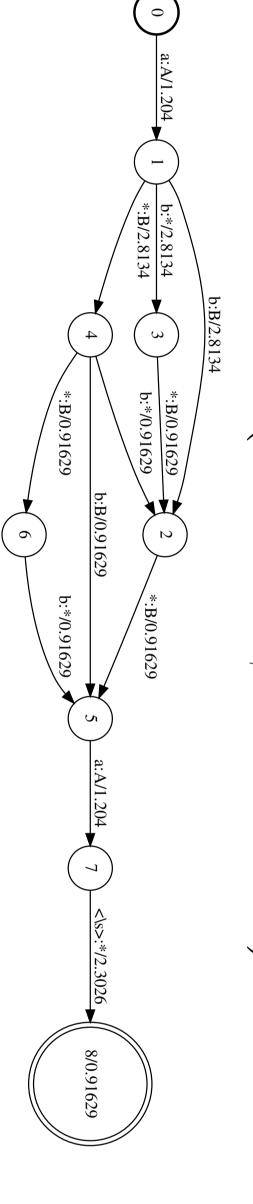
mic


- transcripts and text? Train semisupervised Acoustic Unit-to-Grapheme
- converter
- How to take advantage of disjoint text data?
- Language model initialization for word segmentation

Proposed System

AUD: System from [1] used


Word Segmentation Extension


- System from $\overline{\mathbb{N}}$
- Added ability for Language Model initialization
- Necessary to find words not in initalization vocabulary

AU-to-Grapheme Conversion

- Use of Sequitur G2P [3]
- supervised training on subset of utterances
 Problem to solve: Word boundaries unknown
- Usage Principle similar to [4]:
- transcription and 1-best label sequence Trained per-utterance on unaligned word-level from AU lattice
- Extract highest-order LM and convert to WFST (GLM)

- Build AU-to-Graphone and Graphone-to-Letter WFSTs.
- Compose / = Prune $(a \circ A2G \circ_{\phi} GLM \circ G2L)$.

Experimental Setup

- Different experiments:
- Kaldi Phoneme Recognizer on WSJ Database, WSJ LM training corpus (1631456 sentences)
- AUD on WSJ Database, text corpus as above
 AUD on Xitsonga Database, NCHLT Xitsonga text corpora (40190 sentences)[5]
- Split in training and test (WSJ: 5392/5391 utt., Xitsonga: 2029 utt. each)
- AUD on test set, AU2G is trained training set, segmentation done on test set semi-supervisedly on
- Given fraction of text corpus rand initialize word segmentation LM omly chosen to
- (WER) Measures: Segmentation F-score, Word Error Rate

Results

WER -	Tso AUD F-score 4		WER -	WSJ AUD F-score 2	WER :	WSJ Phn Recog. F-score	Size of LM init corpus
71.5	42.9	%00	77.5	28.3	24.9	79.8	10%
76.4	41.7	10%	77.5	28.2	25.9	78.8	1%
80.8	39.5	1%	78.7	26.8	30.6	75.0	0.1%
94.2	31.3		83.1				0.01%
140.2	17.4	0%	92.5	13.6	61.3	51.8	0%

Conclusion

- boundaries Successful AU2G trai ning possible without word
- word segmentation necessary to find unknown words
- Text data greatly improves recognition performance of speech
- Exemplary: Usage of leads to a relative WER improvement of 42.4%. 400 Xitsonga sentences (1%)

References

- L. Ondel, L. Burget, and J. Cernocky, "Variational inference for acoustic unit discovery," in Proceedings of the 5th Workshop on Spoken Language Technologies for Under-resourced languages, vol. 81, 2016, pp. 80 86.
- J. Heymann, O. Walter, R. Haeb-Umbach, and B. Raj, "Iterative Bayesian word segmentation for unsupervised vocabulary discovery from phoneme lattices," in 39th International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), may 2014.
- M. Bisani and H. Ney, "Joint-sequence models for grapheme-to-phoneme conversion," *Commun.*, vol. 50, no. 5, pp. 434–451, 2008.
- M. Hannemann, Y. Trmal, L. Ondel, S. Kesiraju, and L. Burget, "Bayesian joint-sequence models for grapheme-to-phoneme conversion," in *42th International Conference on Acoustics, Speech and Signal Processing (ICASSP 2017)*, 2017.
- E. Barnard, M. H. Davel, C. J. van Heerden, F. de Wet, and J. Badenhorst, "The NCHLT speech corpus of the south african languages," in 4th Workshop on Spoken Language Technologies for Under-resourced Languages, SLTU 2014, St. Petersburg, Russia, May 14-16, 2014. ISCA, 2014, pp. 194–200.

