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Abstract
In this contribution we show how to exploit text data to sup-
port word discovery from audio input in an underresourced tar-
get language. Given audio, of which a certain amount is tran-
scribed at the word level, and additional unrelated text data, the
approach is able to learn a probabilistic mapping from acous-
tic units to characters and utilize it to segment the audio data
into words without the need of a pronunciation dictionary. This
is achieved by three components: an unsupervised acoustic
unit discovery system, a supervisedly trained acoustic unit-to-
grapheme converter, and a word discovery system, which is ini-
tialized with a language model trained on the text data. Experi-
ments for multiple setups show that the initialization of the lan-
guage model with text data improves the word segementation
performance by a large margin.
Index Terms: underresourced speech recognition, nonparamet-
ric Bayesian estimation, unsupervised word segmentation, un-
supervised learning

1. Introduction
Automatic speech recognition (ASR) has made great progress
in recent years, and ASR systems have been reported to be on
par with human transcribers on certain tasks, such as conversa-
tional speech recognition [1]. However, these systems rely on
supervised learning techniques requiring a significant amount
of transcribed speech, language model training data, and a pro-
nunciation dictionary. While these resources are available for
all major languages, these major languages form only a few per-
cent of all languages worldwide. For many of the less common
languages these resources are not available and simply too ex-
pensive to create. In particular, the creation of the pronunciation
lexicon is copious since it requires a great amount of linguistic
expertise. On the other hand, building a speech recognizer from
audio only and relying solely on unsupervised learning tech-
niques is as of today a widely unsolved challenge.

We argue that this completely zero resource scenario may
be of great scientific, but perhaps to a lesser extent, of practical
interest. For a large number of languages at least some addi-
tional resources exist. If the language has a written form, text
data is usually much cheaper to acquire than complete pronun-
ciation dictionaries and fully annotated speech databases. Fur-
thermore, assuming the availability of simple word-level tran-
scriptions for some utterances is realistic since many record-
ings of speech are acquired by prompting speakers which read
out written sentences.

In this work, we propose a system suited to work with un-
derresourced languages having a written form which is reason-
ably close to its phonetics. It consists of three components: an
acoustic unit discovery (AUD), an acoustic unit-to-grapheme
(AU2G) converter and a word segmentation (WS) algorithm,
see Fig. 1. The AUD component operates in an unsupervised

fashion on audio only. It delivers, for each discovered acous-
tic unit, an HMM-based model. The AU2G converter is trained
utterance-wise and without any information about word bound-
aries in the AU sequence. Only a limited number of unaligned
word-level transcriptions are utilized which are written as char-
acter sequences for the AU2G training. Once trained the AU2G
component converts the discovered AU sequence into a char-
acter (letter) sequence.1 Finally, the WS module segments this
character sequence into words. Rather than doing this in a com-
pletely unsupervised fashion as we did in earlier work [2], the
language model used within the word segmentation is initial-
ized on text data. With this initialization the word segmentation
results can be greatly improved.

Since neither the number of acoustic units needed nor
the size of the vocabulary are known beforehand we employ
Bayesian nonparametric models in the AUD and WS stage.
With these techniques the number of discovered acoustic units
and words can grow with the data. Further, to avoid premature
decision making, the AUD outputs lattices rather than a single
best sequence.

After a review of related work in Section 2 we describe
the different components of the system and their interaction in
more detail in Section 3. Section 4 presents the evaluation of
the performance of the individual components as well as the
overall system. Experiments are carried out for English on the
Wall Street Journal CSR (WSJ) corpus, where the data allow
for well-controlled investigation of the different parts, and on
Xitsonga as an underresourced language.

2. Related work
Recently, there has been an increased interest in low- or zero
resource speech recognition. The works can be grouped in
two classes. One strain of approaches is concerned with boot-
strapping an ASR system from well-trained systems from high-
resource languages and a limited amount of labeled training
data from the target language. They employ multilingual (e.g.,
bottleneck) features or acoustic units and adapt the acoustic and
language models to the target language [3].

An alternative class of techniques considers a completely
zero resource scenario, where neither the acoustic unit inventory
nor transcribed data is available, not to mention a pronunciation
lexicon. In this second category one may distinguish between
“flat” and hierarchical approaches. In the first, word- or phrase-
like segments are to be discovered directly from audio [4, 5].
Only few works fall in the second category which follows a
hierarchical approach, where acoustic phone-like units are de-
tected at the lower and word-like units as sequences of phone-
like units at the higher level of the hierarchy, an approach known
to be very challenging [6]. Our earlier work in [7] accounted for

1In this contribution we use the words ’character’, ’letter’ and even
’grapheme’ synonymously.



Figure 1: Block diagram of the complete system

errors in the first stage by employing a probabilistic pronuncia-
tion lexicon. It was, however, restricted to small vocabularies.
In [8] the authors describe a system to learn a rather complex
inventory of acoustic models at different levels of granularity.
Word-like units are obtained by clustering. They perform model
estimation by iterative reestimation and unsupervised decoding.

Here we also follow a hierarchical approach. This has the
advantage that it can provide “full coverage” transcription, i.e.,
it can transcribe the whole utterance and not only parts of it,
which is in contrast to most approaches in the first category.
Further it is not limited to small vocabulary tasks but can be
applied in principle to arbitrarily large vocabularies. The key
contribution of this paper is that we show a way how to exploit
unrelated text data to improve the word discovery from spoken
utterances.

Finally, it should be mentioned that many works are con-
cerned with either of the two, i.e., with either unsupervised rep-
resentation or acoustic unit learning or with unsupervised seg-
mentation or clustering of speech into meaningful units, e.g.,
[9, 10, 11].

3. System Components
3.1. Acoustic unit discovery

In this work we employ the unsupervised AUD system proposed
by Ondel et al. [12]. To tackle the challenge of discovering
an unknown number of acoustic units, the AUD is based on a
Dirichlet process (DP) Hidden-Markov mixture similar to the
model proposed by Lee et al. [13]. However, while the latter
use a Gibbs sampler (GS) based on the Chinese Restaurant Pro-
cess to perform inference, Ondel et al. perform a variational
approximation based on the stick breaking construction similar
to the approach proposed by Blei and Jordan [14]. They can
show that they outperform the GS-based system in terms of ac-
curacy of the discovered units, while reducing the training time
by parallel processing at the same time. The model is exten-
sively evaluated on different low-resource tasks in [15].

The temporal structure of acoustic unit sequences is mod-
eled by a left-to-right Hidden-Markov model (HMM) for every
acoustic unit and connecting all these HMMs in a phone loop.
Since the DP is memoryless, the model contains no temporal
dependencies over AU boundaries.

The AUD produces decoding results in the form of AU lat-
tices which are then forwarded to the next processing stage.

3.2. Acoustic unit-to-grapheme conversion

In order to take advantage of a LM trained from textual data,
the AU lattices need to be translated into a letter-based format.
This can be done by a Phoneme-to-Grapheme converter, such
as Sequitur [16] or Phonetisaurus [17]. In this work, the Se-
quitur converter is employed. It is based on an underlying hid-
den sequence of joint symbols called graphones. In our case,

a graphone consists of either zero or one AU and zero or one
letter, forming an AU-letter pair. Thus an AU can be mapped
to zero or one letter, and, vice versa, a letter to zero or one AU.
Furthermore, a Graphone-LM based on Kneser-Ney smoothing
is used to model graphone sequence likelihoods. The model is
trained by jointly presenting the character and AU sequences
of the training sentences (not of indivdual words) and perform-
ing LM probability estimation by means of an EM algorithm.
An advantage of the system is its symmetry, i.e., it can be used
for acoustic unit-to-grapheme (AU2G) as well as grapheme-to-
acoustic unit (G2AU) conversion.

Since the converter is not suitable for lattice input, we mod-
ify the model in the following way:

1. Sequitur is trained on a per-utterance basis by present-
ing an unaligned word-level transcription and the 1-best
label sequence from the acoustic lattice for successively
higher LM orders.

2. The highest-order LM is extracted from Sequitur and
converted into a Weighted Finite State Transducer.

3. Similar to the approach in [18], two additional transduc-
ers are constructed to convert acoustic units and charac-
ters into the corresponding graphones.

4. The LM transducer and the conversion transducers are
composed to get a AU2G transducer which is able to per-
form a probabilistic conversion on acoustic lattices.

5. For each utterance in the final test set to be segmented
into words, the acoustic lattice is composed with the
AU2G transducer to obtain a grapheme (i.e., letter) lat-
tice.

An obvious shortcoming of this aproach is the mismatch
between training and actual usage: The AU2G system is used
on AU lattices while the Sequitur training only sees the 1-best
sequences. Furthermore and in contrast to the AUD and the
word segmentation, the AU2G system is not based on a full
Bayesian formulation of the problem. Both shortcomings could
be adressed by making use of the WFST-based system recently
proposed by Hannemann et al. [18], but this is left to future
work.

3.3. Word segmentation

The word segmentation task is carried out by the system pro-
posed by Heymann et al. [19, 2]. This system is an extension of
the one proposed by Neubig et al. [20], which includes a proper
treatment of higher-order language models.

The goal of the WS is to identify word boundaries in the
sequence of given AUs. The word segmentation relies on the
fundamental assumption that the variation of a symbol sequence
representing a sentence is higher at word boundaries than it is
inside words. Thus, given a sufficiently large corpus of sen-
tences, frequently appearing subsequences will be detected as



forming words. By carrying out multiple iterations over the cor-
pus and jointly segmenting sequences and learning new words
and their probabilities, the word segmentation system is able to
improve the segmentation over time.

The segmentation is done by applying a lexicon that trans-
lates known character sequences into word symbols while un-
known sequences are passed through. Then, the resulting pos-
sible sequences are weighted with an n-gram LM that explic-
itly incorporates the word boundaries by a word-end symbol.
Since new words have to be learned on the fly, the LM must be
able to assign weights to unknown words. Thus, a core com-
ponent of the system is the nested hierarchical Pitman-Yor lan-
guage model (NHPYLM) introduced by Mochihashi et al. [21]
which is based on the hierarchical Pitman-Yor language model
(HPYLM). The close relationship of the HPYLM to a certain
kind of Kneser-Ney LM has been shown by Teh [22] and it can
be understood as a special way of interpolation and backing off.

For the HPYLM, the zerogram word probability is assumed
to be uniform. This probability, however, cannot be computed
if the number of words is unknown. Therefore the NHPYLM
models the zerogram probabilities by a second character-level
HPYLM that weighs character sequences ending with a word
end symbol. Newly learned words are added to the lexicon
whenever hypothesized.

After initializing the language model with text data, the seg-
mentation is thus carried out as follows:
For every iteration:

1. for every sentence in the corpus:

(a) Hypothesize word ends at every possible position,
i.e., after every letter.

(b) Translate and weigh all possible sequences with
lexicon and LM.

(c) Sample a segmentation from all paths through the
weighted sequences.

(d) Parse segmentation: Add new words to lexicon
and update LM counts.

2. Resample the hyper parameters of the NHPYLM for ev-
ery level of the LM

The sampling of a segmentation is performed by forward filter-
ing – backward sampling as described in [21] and is carried out
as a blocked Gibbs sampling scheme.

Furthermore, the implementation relies on weighted finite
state transducers (WFSTs): The input sequences, the lexicon
and the LM are represented by WFSTs. Thus, the translation
and weighting steps can be performed by composition. This al-
lows to extend the system to lattice input instead of single char-
acter sequences as described by [2]: Here, for every utterance,
the lattice is weighted with a letter-only LM first and the best
sequence is extracted. Then, a sequence segmentation as above
is performed.

If a text corpus for the target language is available, the lex-
icon and all LMs can be initialized upfront. This is performed
by putting a word end token at every word boundary and pars-
ing the corpus in the same manner as done during the itera-
tions. However, this is only possible if the input consists of let-
ter lattices, i.e., after the AU lattices have been passed through a
AU2G as explained above. The core assumption is that spoken
and written language are sufficiently close and the LM proba-
bilities are thus meaningful to describe the spoken language.

4. Experiments
Experiments were performed on the Wall Street Journal CSR
(WSJ) corpus [23] and on the Xitsonga dataset of the 2015
Zero Resource Speech Challenge [24, 25]. We first describe
data preparation and experiments on WSJ and then move on to
the Xitsonga experiments.

4.1. Data preparation on WSJ

We divided the WSJ corpus in such a way as to mimic a sce-
nario we consider typical for an underresourced language, as
described in the introduction: The data sets are built by taking
10783 unique utterances from the WSJ si284 set and splitting
them in two halves, a training set comprising 5392 utterances
and a test set with 5391 utterances. The training set is used for
the training of the AU2G component as described earlier, while
performance evaluation is conducted on the test set. For all se-
tups, a 6-gram graphone LM is used. After training the AU2G
component, the character error rate (AU2G CER) on the test set
can be obtained as intermediate quality measure for the AU2G
component: The AU2G translation of the 1-best sequence is
compared to the reference letter sequence and the total number
of substitutions, insertions and deletions is set in relation to the
total length of the reference sequences.

The LM of the word segmentation module is initialized by
randomly taking up to 10% of the 1,631,456 sentences of the
WSJ language model training corpus. The WS stage is evalu-
ated by comparing the resulting segmented strings with the cor-
rectly segmented reference transcriptions. The quality is mea-
sured with the segmentation F-score and the word error rate
(WER) with respect to the reference transcription.

Table 1 shows the results for different experimental setups
and different sizes of the text corpus for LM initialization, rang-
ing from 10%, 1%, 0.1%, 0.01% to 0% of the 1,631,456 sen-
tences of the WSJ language model training text corpus. Here,
0% means that the WS language model is learned from scratch,
i.e., without the use of text data to learn an initial model. The
different setups are explained in the next sections.

4.2. Performance on phoneme lattices

The first set of experiments called WSJ Kaldi aims to assess
the impact of the initialization without the additional uncer-
tainty introduced by the unsupervised AU discovery. There-
fore, phoneme lattices are produced with a phoneme recognizer
trained in a supervised way using the Kaldi toolkit [26]. The
recognizer is trained with the complete Kaldi WSJ recipe on
the above described training set.

After finishing the acoustic model training, phoneme lat-
tices are created for the train and test set by replacing the usual
word-level LM with a bigram phoneme LM in the decoding
step. The recognizer results in a phoneme error rate (PER) of
12.72% on the test set.

The AU2G component is trained on the training set with
1-best sequences from the phoneme latttices. The AU2G CER
ranges from 21.5% for a bigram graphone LM to 7.7% for the
6-gram LM, which reflects the low uncertainty in the phoneme
recognition stage. The AU2G conversion is performed on the
phoneme lattices to obtain character lattices and word segmen-
tation is carried out on the latter.

It can be seen that the word segmentation strongly benefits
from LM initialization. For example, the performance measure
WER reduces from 61.3% without LM initialization to 24.9%
with LM initialization on 10% of the LM data.



Table 1: Word segmentation results depending on the LM ini-
tialization for different experiments

10% 1% 0.1% 0.01% 0%
WSJ Kaldi
F-score 79.8 78.8 75.0 63.1 51.8
WER 24.9 25.9 30.6 46.5 61.3
WSJ AUD
F-score 28.3 28.2 26.8 22.7 13.6
WER 77.5 77.5 78.7 83.1 92.5

100% 10% 1% 0%
Tso AUD
F-score 40.1 32.0 23.0 17.4
WER 79.6 92.9 119.0 140.2

4.3. Word segmentation on acoustic unit discovery

In the second set of experiments called WSJ AUD the phoneme
recognizer is replaced by the AUD, which discovers AUs in an
unsupervised fashion. AU2G conversion and subsequent word
segmentation are thus performed on lattices generated by the
AUD component.

The unsupervised AUD is learned on the test set. Thus,
AUD and WS see the same set for discovery. The AUD discov-
ers 80 different acoustic units, which is about twice as many as
there are phonemes in the WSJ lexicon.

To assess the quality of the AUD, two measures are taken
into account: Firstly, the normalized mutual information (NMI),
which is a measure of the similarity of the discovered acous-
tic units with the true phoneme sequences (see [15] for de-
tails). Secondly, an equivalent unsupervised phoneme error rate
(EPER) is computed by mapping each acoustic unit to the best-
matching phoneme based on a confusion matrix, adding up the
edit distances between the mapped AU sequences and the corre-
sponding reference transcriptions and normalizing on the total
length of the reference transcriptions (see [5] for an equivalent
unsupervised word error rate).

For the AUD result on WSJ, the NMI of the training set is
at 35.9% while the EPER is at 75.2%.

The AU2G component is again trained on the training set
but this time, the 1-best sequences from the acoustic unit lattices
are used. The higher uncertainty is reflected in the AU2G CER
which is at 52.3% for the bigram case and only takes a small
drop to 51.5% for the 6-gram case.

If the phoneme lattices are replaced by the AU lattices, er-
ror rates increase significantly. This is to be expected, because
unsupervised learning of acoustic units is a challenging prob-
lem. But still, LM initialization significantly improves WS per-
formance, however, not as strongly as in the case of phoneme
lattices: Here, the WER reduces from 92.5% to 77.5%.

4.4. Word segmentation on acoustic unit discovery for Xit-
songa

Finally, for the set of experiments called Tso AUD, the AUD
experiment is repeated on the Xitsonga dataset of the 2015 Zero
Resource Speech Challenge [27]. The dataset consists of 4058
utterances and is randomly split into a training set and a test set,
containing 2029 utterances each. Since the database is compar-
atively small, the AUD is performed on both sets, resulting in
89 acoustic units, an NMI of 44.9% and an EPER of 58.3%.

The AU2G component is trained on the respective training
set as described and word segmentation is performed on the test

Table 2: Fraction of known unique words in the reference tran-
scriptions depending on the LM initialization

WSJ 10% 1% 0.1% 0.01%
94.3% 75.5% 38.1% 8.1%

Tso 100% 10% 1%
57.3% 19.81% 3.8%

set after translation by the AU2G component. Here, the AU2G
CER of the AU2G component ranges between 34.4% for the
bigram case and 33.5% for the 6-gram case. Additionally, the
transcriptions of the training set are reused for word segmenta-
tion LM initialization, where fractions of 100%, 10%, 1% and
0% of the 2029 sentences are used.

One can see from Table 1 that, again, LM initialization im-
proves performance of the word segmentation significantly. If
all transcriptions of the training set are used for LM intializa-
tion, the WER settles at 79.6%.

4.5. Importance of word segmentation

One might argue that with the given text data for the LM ini-
tialization, there is no need for a word segmentation module,
because one could compile a word list already from the text
data. This, indeed, would be true, if the text data for LM ini-
tialization contained all words that occur in the test set. The
WSJ test set contains 10284 unique words, and Table 2 shows
which percentage of these words is present in the LM training
data. It can be seen that only some fraction of words is known
for the LM corpus of size 0.1% and 0.01%, demonstrating that
the WS module is indeed an important component. Likewise,
the reference transcripts of the Xitsonga test set contain 15090
unique words, while even the 100% fraction of the training set
transcriptions contains only 57.3% of these words.

If text data is scarce, the transcriptions of the training cor-
pus can be used to enlarge or replace the WS LM initialization
corpus. In this work, this was done for Xitsonga but not for
WSJ. For WSJ we instead opted for a better isolation of the
separate components, by using separate WS LM initialization
data. This exemplifies an important use case where the AU2G
and WS components are trained independently, e.g. at different
sites.

5. Conclusions
The system presented here performs acoustic unit discovery and
on top of that word discovery for an underresourced language.
The system does not require phonetic or linguistic expert knowl-
edge of the language. It does, however, assume the availability
of a certain amount of speech transcribed at the word level for
the training of an acoustic unit-to-grapheme converter. We show
how text data can be effectively used to improve the word dis-
covery performance on untranscribed speech.

6. Acknowledgements
The work reported here was supported by Deutsche
Forschungsgemeinschaft (DFG) under contract no. Ha3455/12-
1 within the priority program 1527 Autonomous Learning.

The proposed system emerged as part of the 2016 Jelinek
Memorial Summer Workshop on Speech and Language Tech-
nologies, which was supported by Johns Hopkins University via
DARPA LORELEI Contract No HR0011-15-2-0027, and gifts
from Microsoft, Amazon, Google, and Facebook.



7. References
[1] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke,

D. Yu, and G. Zweig, “The Microsoft 2016 conversational speech
recognition system,” ArXiv e-prints, Sep. 2016.

[2] J. Heymann, O. Walter, R. Haeb-Umbach, and B. Raj, “Iterative
Bayesian word segmentation for unsupervised vocabulary discov-
ery from phoneme lattices,” in 39th International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2014), may
2014.

[3] N. T. Vu, F. M. Schultz, and Tanja, “Multilingual bottleneck fea-
tures and its application for under-resourced languages,” in The
third International Workshop on Spoken Languages Technologies
for Under-resourced Languages, Cape Town, South Africa, 2012,
SLTU12.

[4] A. S. Park and J. R. Glass, “Unsupervised pattern discovery in
speech,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 16, no. 1, pp. 186–197, Jan 2008.

[5] H. Kamper, A. Jansen, and S. Goldwater, “Unsupervised word
segmentation and lexicon discovery using acoustic word embed-
dings,” IEEE/ACM Trans. Audio, Speech and Lang. Proc., vol. 24,
no. 4, pp. 669–679, Apr. 2016.

[6] A. Jansen et al., “A summary of the 2012 JHU workshop on zero
resource speech technologies and models of early language acqui-
sition,” vol. 2013, 2013.

[7] O. Walter, T. Korthals, R. Haeb-Umbach, and B. Raj, “Hierarchi-
cal system for word discovery exploiting DTW-based initializa-
tion,” in Automatic Speech Recognition and Understanding Work-
shop (ASRU 2013), Dec. 2013.

[8] C. Chung, C. Chan, and L. Lee, “Unsupervised spoken term de-
tection with spoken queries by multi-level acoustic patterns with
varying model granularity,” CoRR, vol. abs/1509.02213, 2015.

[9] C. Lee and J. Glass, “A nonparametric Bayesian approach to
acoustic model discovery,” in Proc. of 50th Annual Meeting of
the ACL. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2012, pp. 40–49.

[10] H. Kamper, M. Elsner, A. Jansen, and S. Goldwater, “Unsuper-
vised neural network based feature extraction using weak top-
down constraints,” in Proceedings of the 40th IEEE International
Conference on Acoustics, Speech and Signal Processing, 2015.

[11] S. Goldwater, T. L. Griffiths, and M. Johnson, “A Bayesian frame-
work for word segmentation: Exploring the effects of context,”
Cognition, vol. 112, no. 1, pp. 21 – 54, 2009.

[12] L. Ondel, L. Burget, and J. Cernocky, “Variational inference for
acoustic unit discovery,” in Proceedings of the 5th Workshop on
Spoken Language Technologies for Under-resourced languages,
vol. 81, 2016, pp. 80 – 86, SLTU-2016 5th Workshop on Spo-
ken Language Technologies for Under-resourced languages 09-12
May 2016 Yogyakarta, Indonesia.

[13] C. Lee, Y. Zhang, and J. Glass, “Joint learning of phonetic units
and word pronunciations for ASR,” in Proceedings of the 2013
Conference on Empirical Methods on Natural Language Process-
ing (EMNLP), 2013, pp. 182–192.

[14] D. M. Blei and M. I. Jordan, “Variational inference for Dirichlet
process mixtures,” Bayesian Anal., vol. 1, no. 1, pp. 121–143, 03
2006.

[15] C. Liu, J. Yang, M. Sun, S. Kesiraju, A. Rott, L. Ondel, P. Ghahre-
mani, N. Dehak, L. Burget, and S. Khudanpur, “An empirical eval-
uation of zero resource acoustic unit discovery,” ArXiv e-prints,
Feb. 2017.

[16] M. Bisani and H. Ney, “Joint-sequence models for grapheme-to-
phoneme conversion,” Speech Commun., vol. 50, no. 5, pp. 434–
451, 2008.

[17] J. R. Novak, N. Minematsu, and K. Hirose, “WFST-based
grapheme-to-phoneme conversion: Open source tools for align-
ment, model-building and decoding,” in Proceedings of the 10th
International Workshop on Finite State Methods and Natural Lan-
guage Processing, 2012.

[18] M. Hannemann, Y. Trmal, L. Ondel, S. Kesiraju, and L. Burget,
“Bayesian joint-sequence models for grapheme-to-phoneme con-
version,” in 42th International Conference on Acoustics, Speech
and Signal Processing (ICASSP 2017), 2017.

[19] J. Heymann, O. Walter, R. Haeb-Umbach, and B. Raj, “Unsuper-
vised word segmentation from noisy input,” in Automatic Speech
Recognition and Understanding Workshop (ASRU 2013), Dec.
2013.

[20] G. Neubig, M. Mimura, S. Mori, and T. Kawahara, “Bayesian
learning of a language model from continuous speech,” IEICE
Transactions on Information and Systems, vol. E95-D, no. 2, pp.
614–625, February 2012.

[21] D. Mochihashi, T. Yamada, and N. Ueda, “Bayesian unsupervised
word segmentation with nested Pitman-Yor language modeling,”
in Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 1 - Volume 1, ser.
ACL ’09. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2009, pp. 100–108.

[22] Y. W. Teh, “A Bayesian interpretation of interpolated Kneser-
Ney,” NUS School of Computing, Tech. Rep., 2006.

[23] D. B. Paul and J. M. Baker, “The design for the Wall Street
Journal-based CSR corpus,” in Proceedings of the Workshop on
Speech and Natural Language, ser. HLT ’91. Stroudsburg, PA,
USA: Association for Computational Linguistics, 1992, pp. 357–
362.

[24] M. Versteegh, X. Anguera, A. Jansen, and E. Dupoux, “The Zero
Resource Speech Challenge 2015: Proposed approaches and re-
sults,” Procedia Computer Science, vol. 81, pp. 67 – 72, 2016,
sLTU-2016 5th Workshop on Spoken Language Technologies for
Under-resourced languages 09-12 May 2016 Yogyakarta, Indone-
sia.

[25] E. Barnard, M. H. Davel, C. J. van Heerden, F. de Wet, and
J. Badenhorst, “The NCHLT speech corpus of the south african
languages,” in 4th Workshop on Spoken Language Technologies
for Under-resourced Languages, SLTU 2014, St. Petersburg, Rus-
sia, May 14-16, 2014. ISCA, 2014, pp. 194–200.

[26] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi speech recog-
nition toolkit,” in IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Processing So-
ciety, Dec. 2011, iEEE Catalog No.: CFP11SRW-USB.

[27] M. Versteegh, R. Thiolliere, T. Schatz, X. N. Cao, X. Anguera,
A. Jansen, and E. Dupoux, “The Zero Resource Speech Challenge
2015,” in Proceedings of Interspeech, 2015.


