

Hidden Markov Model Variational Autoencoder for Acoustic Unit Discovery

Janek Ebbers¹, Jahn Heymann¹, Lukas Drude¹, Thomas Glarner¹, Reinhold Haeb-Umbach¹, Bhiksha Raj²

¹Department of Communications Engineering - Paderborn University

²Language Technologies Institute - Carnegie Mellon University

20.08.2017

Introduction (1)

Acoustic unit discovery (AUD)

- Learning acoustic units (phonetic inventory) from raw speech
- Unsupervised training of generative model
- SOTA: GMM/HMM

Introduction (2)

Motivation

- Known from ASR: Superiority of DNNs over GMMs
 - ► But: Discriminative DNNs not transferable to AUD
- Variational Autoencoder (VAE)
 - Deep generative model
 - Sophisticated data distribution modeling by DNN
 - ► Efficient variational inference by DNN
- Here: Marrying VAE with HMM for AUD with sophisticated emission distribution modeling

Variational Autoencoder (1)

Model

· Latent codes:

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{I})$$

• Non-linear observation model:

$$\mathbf{y} = f(\mathbf{x}; \delta) + \mathbf{v}; \quad \mathbf{v} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\Rightarrow p(\mathbf{y}|\mathbf{x};\delta) = \mathcal{N}(\mathbf{y};f(\mathbf{x};\delta),\sigma^2\mathbf{I})$$

Variational Autoencoder (1)

Model

Latent codes:

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{I})$$

• Non-linear observation model:

$$\mathbf{y} = f(\mathbf{x}; \delta) + \mathbf{v}; \quad \mathbf{v} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\Rightarrow p(\mathbf{y}|\mathbf{x}; \delta) = \mathcal{N}(\mathbf{y}; f(\mathbf{x}; \delta), \sigma^2 \mathbf{I})$$

Variational inference:

$$egin{aligned} q(\mathbf{x}|\mathbf{y};\phi) &= \mathcal{N}ig(\mathbf{x};oldsymbol{\mu}_{\mathbf{x}|\mathbf{y}},oldsymbol{\Sigma}_{\mathbf{x}|\mathbf{y}}ig) \ ig(oldsymbol{\mu}_{\mathbf{x}|\mathbf{y}}, \ln \sigma_{\mathbf{x}|\mathbf{y}}ig) &= g(\mathbf{y};\phi) \end{aligned}$$

Variational Autoencoder (2)

Variational Autoencoder (2)

GMMVAE (1)

Model

• Latent codes:

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{I})$$

• Non-linear observation model:

$$\mathbf{y} = f(\mathbf{x}; \delta) + \mathbf{v}; \quad \mathbf{v} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\Rightarrow p(\mathbf{y}|\mathbf{x}; \delta) = \mathcal{N}(\mathbf{y}; f(\mathbf{x}; \delta), \sigma^2 \mathbf{I})$$

Variational inference:

$$q(\mathbf{x}|\mathbf{y};\phi) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{\mathbf{x}|\mathbf{y}}, \boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{y}})$$

 $(\boldsymbol{\mu}_{\mathbf{x}|\mathbf{y}}, \ln \boldsymbol{\sigma}_{\mathbf{x}|\mathbf{y}}) = g(\mathbf{y};\phi)$

GMMVAE (1)

Model

• Latent codes:

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{I}) \Rightarrow p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}})$$

Non-linear observation model:

$$\mathbf{y} = f(\mathbf{x}; \delta) + \mathbf{v}; \quad \mathbf{v} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\Rightarrow p(\mathbf{y}|\mathbf{x}; \delta) = \mathcal{N}(\mathbf{y}; f(\mathbf{x}; \delta), \sigma^2 \mathbf{I})$$

Variational inference:

$$egin{aligned} q(\mathbf{x}|\mathbf{y};\phi) &= \mathcal{N}ig(\mathbf{x};oldsymbol{\mu}_{\mathbf{x}|\mathbf{y}},oldsymbol{\Sigma}_{\mathbf{x}|\mathbf{y}}ig) \ ig(oldsymbol{\mu}_{\mathbf{x}|\mathbf{y}},\lnoldsymbol{\sigma}_{\mathbf{x}|\mathbf{y}}ig) &= g(\mathbf{y};\phi) \end{aligned}$$

GMMVAE (2)

ML estimate

$$\hat{z} = \mathop{\mathrm{argmax}}_{z} b_z(\mathbf{y})$$

$$\ln b_z(\mathbf{y}) = -H(q(\mathbf{x}|\mathbf{y}), p(\mathbf{x}|z)) \quad \text{(acoustic score)}$$

NT

HMMVAE

HMMVAE

Inference

$$\ln b_z(\mathbf{y}) = -H(q(\mathbf{x}|\mathbf{y}), p(\mathbf{x}|z))$$

 $q(Z|\mathbf{Y}) = FB(\mathbf{Y}; b_z, \pi, \mathbf{A})$

$$\hat{Z} = Viterbi(Y; b_z, \pi, A)$$

NT

HMMVAE

Inference

$$\operatorname{In} b_z(\mathbf{y}) = -H(q(\mathbf{x}|\mathbf{y}), p(\mathbf{x}|z))$$

$$q(Z|\mathbf{Y}) = \operatorname{FB}(\mathbf{Y}; b_z, \pi, \mathbf{A})$$

$$\hat{Z} = \operatorname{Viterbi}(\mathbf{Y}; b_z, \pi, \mathbf{A})$$

HMMVAE

Objective

$$\mathcal{L}(\mathbf{Y}; \theta, \delta, \phi) = \underbrace{\mathbb{E}_{q(\mathbf{X}|\mathbf{Y}; \phi)} \big[\ln p(\mathbf{Y}|\mathbf{X}; \delta) \big]}_{\text{Reconstruction score}} - \underbrace{\text{KL} \big(q(\mathbf{X}, \mathbf{Z}|\mathbf{Y}; \phi) || p(\mathbf{X}, \mathbf{Z}; \theta) \big)}_{\text{Regularization}}$$

Experiments

Task: Acoustic Unit Discovery (AUD)

- · Database: Timit
- Unsupervised training of HMMVAE
- Segmentation of utterances

Model

- U=72 units, each modeled by three states (left-right)
- Features: 13 element MFCCs with Δ and $\Delta\Delta$
- Initialized using segmentation found by unsupervised GMM/HMM¹

Performance measure

- Normalized mutual information (NMI)
- Equivalent phone error rate (eq. PER)

¹L. Ondel, L. Burget, and J. Cernocky, "Variational Inference for Acoustic Unit Discovery"

Results

Model	Training	NMI	eq. PER
GMM/HMM	FB	37.8%	65.4%
HMMVAE	Viterbi	42.8%	58.9%
HMMVAE	FB	42.6%	59.0%

Conclusions

Summary

- Extended VAE by an HMM in latent code space to capture temporal correlations
- Derived iterative EM-like algorithm for inference and optimization
- Applied HMMVAE to unsupervised AUD task
- Significantly improved AUD performance over variational GMM/HMM in terms of NMI and eq. PER

Future Work

· Bayesian parameter estimation