

lidden Markov Model Total Acoustic ariati onal SCOVETY Autoencoder

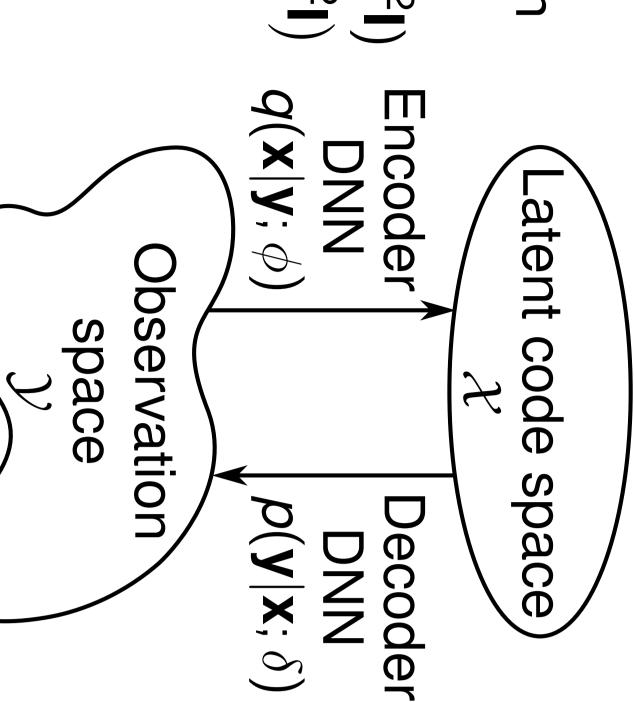
Paderborn Janek Ebbers¹ University, Germany Jahn Heymann¹, Lukas Drude¹, Thomas Glarner¹, Reinhold Haeb-Umbach¹, Bhiksha Raj², ²Carnegie Mellon University, United States

Introduction

- Acoustic unit discovery (AUD)
- Learning AUs (phonetic inventory) from raw sp eech
- Unsupervised training of generative model
- SOTA: GMM/HMM
- Known from ASR: Superiority of DNNs over GMMs
- But: Discriminative DNNs not transferable to AUD

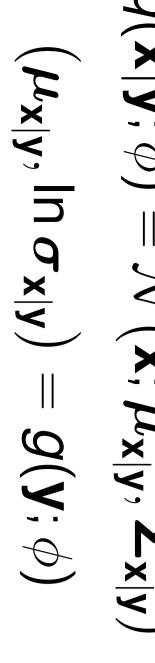
- /ariational Autoencoder (VAE) [1]
 Deep generative model
 Sophisticated data distribution modeling by DN Z
- Efficient variational inference by DNN
- Here: Marrying VAE with HMM for AUD with sophisticated emission distribution modeling

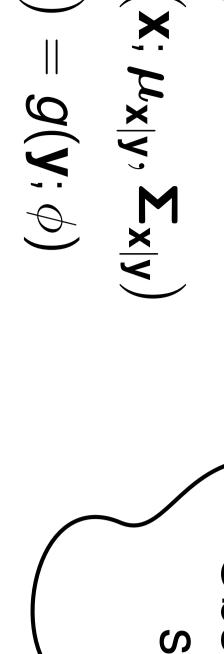
- Given: arbitrary distributed observations
- Assuming: simply structured latent codes × $\mathcal{N}(\mathbf{0},\mathbf{I})$
- Modeling observations by $\mathbf{y} = f(\mathbf{x}; \delta) + \mathbf{v};$ decoder $f(\mathbf{x}; \delta)$ and Gaussian observation noise v:

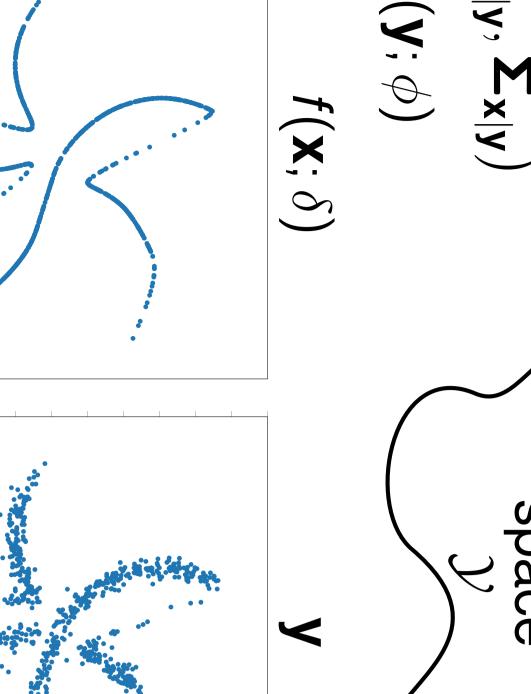


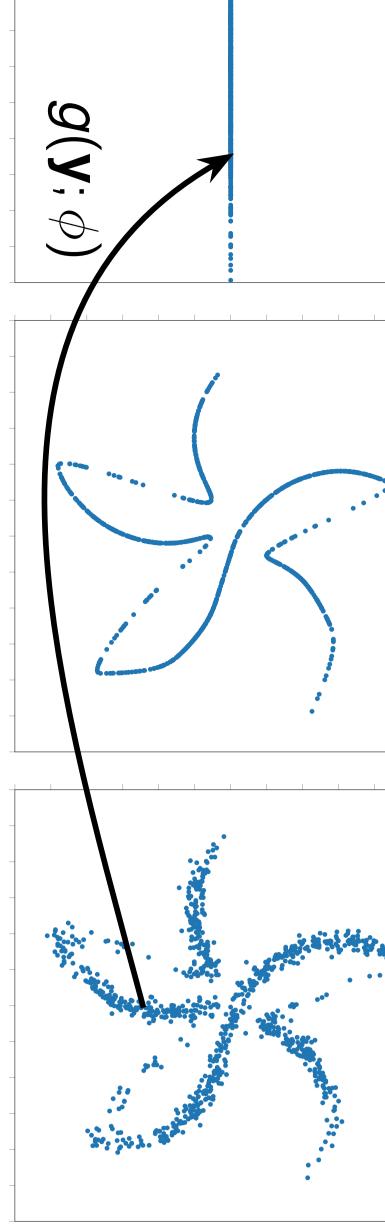
- $\mathbf{V} \sim \mathcal{N}(\mathbf{0}, \sigma^2\mathbf{I})$
- Variational inference by encoder $g(\mathbf{y}; \phi)$: $\Rightarrow p(\mathbf{y}|\mathbf{x};\delta)$ $= \mathcal{N}(\mathbf{y}; f(\mathbf{x}; \delta), \sigma^2 \mathbf{I})$

$$q(\mathbf{x}|\mathbf{y};\phi) = \mathcal{N}(\mathbf{x};\boldsymbol{\mu}_{\mathbf{x}|\mathbf{y}},\boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{y}})$$



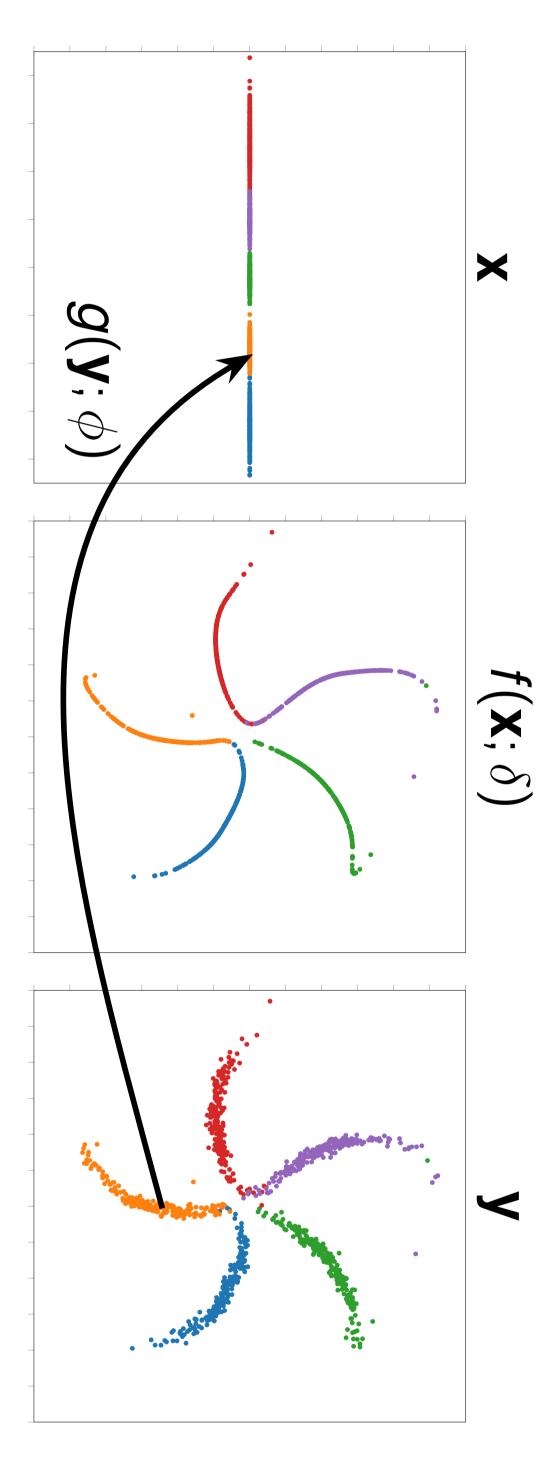




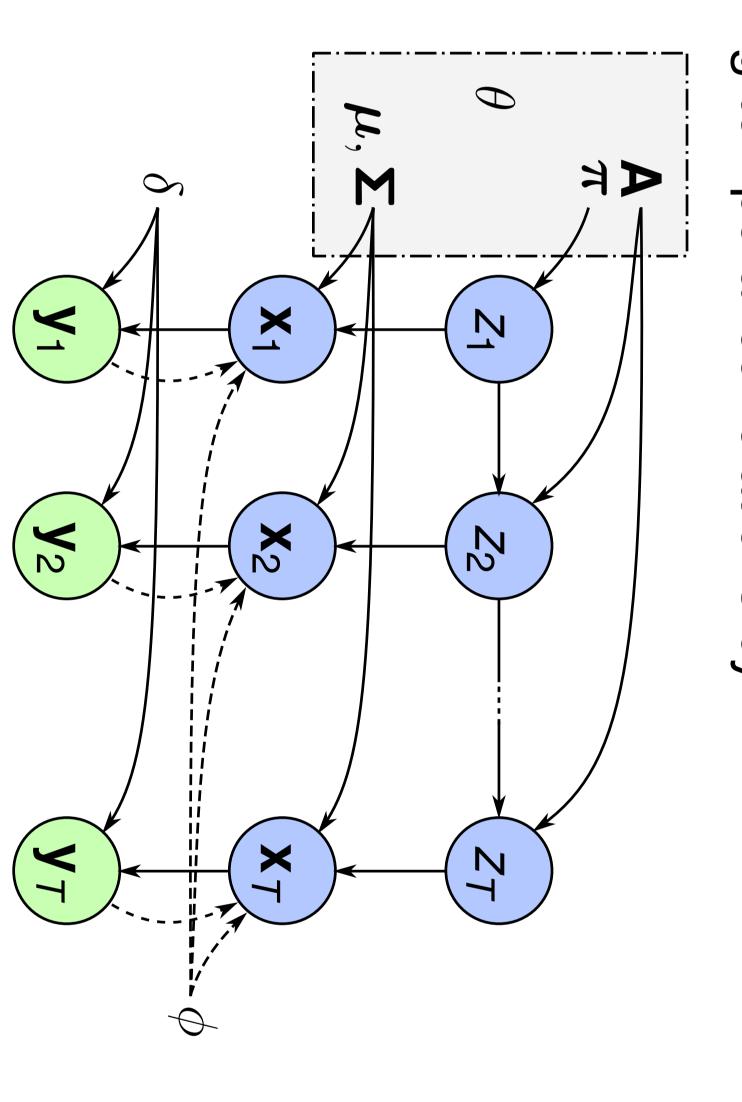


D

- Introducing latent classes (states
- Class specific codes: $p(\mathbf{x}|z;\theta)$ $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{Z},$



Modeling temporal correlations b HMM:



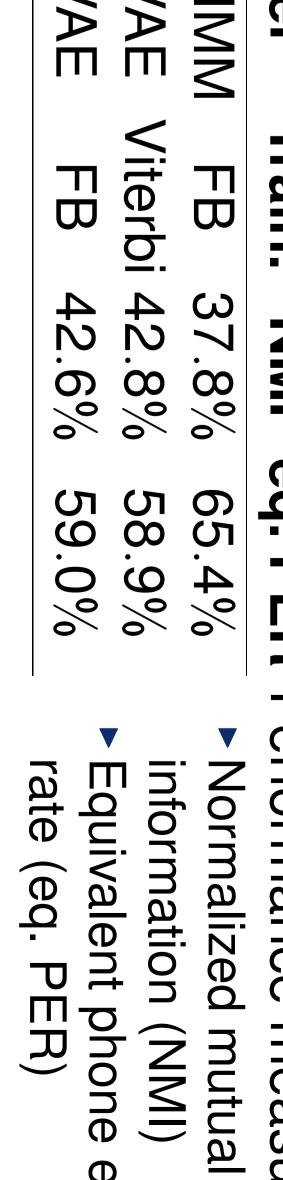
Inference Qo Iraining

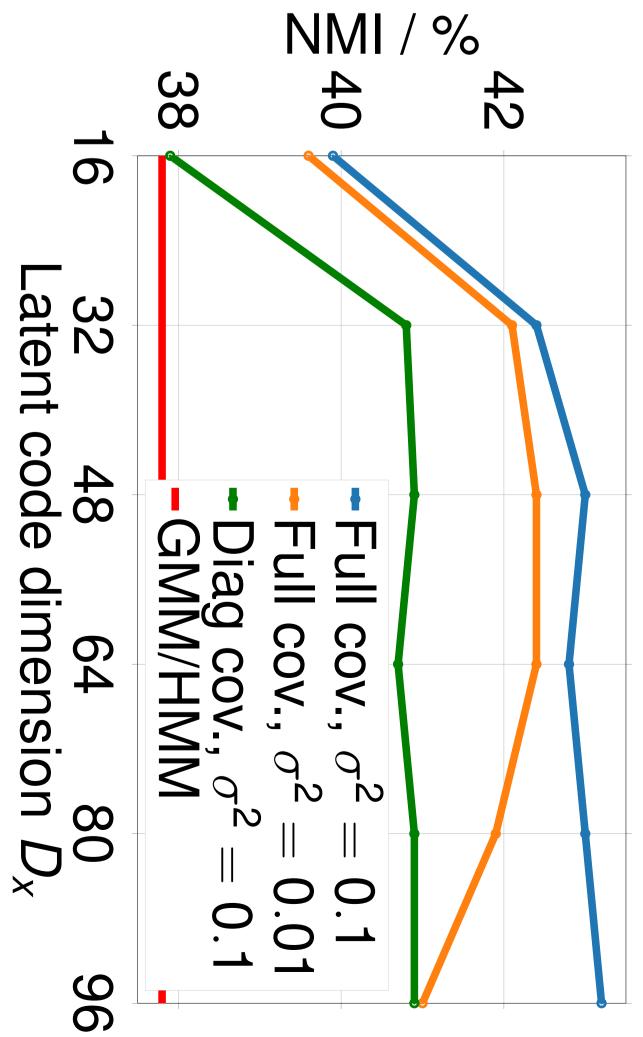
- Acoustic score: $\ln b_z(\mathbf{y}) = -H(q(\mathbf{x}|\mathbf{y}), p(\mathbf{x}|z))$ enables forward-backward and Viterbi:
- $q(\mathbf{Z}|\mathbf{Y}) = \mathsf{FB}(\mathbf{Y}; b_Z, \pi, \mathbf{A});$ Viterbi($\mathbf{Y}; b_z, \pi, \mathbf{A}$)
- Joint training of all parameters θ , δ, ϕ
- Objective: Maximization of variational lower bound $\mathcal{L}(\mathbf{Y}; heta,\delta,\phi) =$ $\mathbb{E}_{q(\mathbf{X}|\mathbf{Y};\phi)}[\ln p(\mathbf{Y}|\mathbf{X};\delta)]$ $q(\mathbf{X})$ $\mathbf{Z}[\mathbf{Y}; \phi) | p(\mathbf{X}, \mathbf{Z}; \theta)$
- Optimizer: Adam with stepsize

Experiments

- Goal: discovering latent acoustic units
- Database: Timit 4620 train sentences (3.14h), 1680 test sentences (0.81h)
- Features: 13 element MFCCs with Δ and $\Delta\Delta$
- Initialization: Using segmentations found by unsupervised GMM/HMM [2]
- Model 72 AUs, each modeled by three states Z S eq. PER Performance (left-right topology) measures

	HMMVAE	HMMVAE	GMM/HMM	
	Ш	П	Z	
	FB	Viterbi	FB	
	42.6%	42.8%	37.8%	
	59.0%	58.9%	65.4%	•
- (_ rate	, Into	· Nor	





ionclusions

- capture temporal correlations Extended VAE by an HMM in latent code space Q
- Iterative EM-like algorithm for inference and optimization
- Applied HMMVAE to unsupervised AUD task
- Significantly improved AUD performance GMM/HMM in terms of NMI and eq. PER over variational
- Outlook: Bayesian parameter estimation

References

[2] "Variational Inference [1] "Auto-Encoding Variational Bayes" Ondel, Burget, and
or
Acoustic Unit Discovery" J. Cernocky D. P. Kingma and M. Welling

