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Abstract

Recent advances in discriminatively trained mask estimation
networks to extract a single source utilizing beamforming tech-
niques demonstrate, that the integration of statistical models
and deep neural networks (DNNs) are a promising approach
for robust automatic speech recognition (ASR) applications. In
this contribution we demonstrate how discriminatively trained
embeddings on spectral features can be tightly integrated into
statistical model-based source separation to separate and tran-
scribe overlapping speech. Good generalization to unseen spa-
tial configurations is achieved by estimating a statistical model
at test time, while still leveraging discriminative training of
deep clustering embeddings on a separate training set. We
formulate an expectation maximization (EM) algorithm which
jointly estimates a model for deep clustering embeddings and
complex-valued spatial observations in the short time Fourier
transform (STFT) domain at test time. Extensive simulations
confirm, that the integrated model outperforms (a) a deep clus-
tering model with a subsequent beamforming step and (b) an
EM-based model with a beamforming step alone in terms of
signal to distortion ratio (SDR) and perceptually motivated met-
ric (PESQ) gains. ASR results on a reverberated dataset further
show, that the aforementioned gains translate to reduced word
error rates (WERs) even in reverberant environments.

Index Terms: blind source separation, deep clustering, expec-
tation maximization, beamforming

1. Introduction

Traditionally, multi channel blind speech separation is tackled
with statistical model based separation systems. In particular
approaches that exploit the sparseness of speech in the STFT
domain have become very popular [1, 2, 3, 4, 5, 6]. The majority
of these techniques neglects frequency dependencies carrying
out separation on each frequency separately, which lead to the
permutation problem: Even if the source separation were per-
fect for each frequency bin, it is likely, that component one of
a given frequency bin does not correspond to the same speaker
as component one of another frequency bin [7]. Notable ex-
ceptions either apply a frequency normalization [8] or estimate
statistics which are shared across frequencies [9].

Single channel source separation is an even harder problem
than multi channel source separation. Shallow blind decom-
position techniques, such as Nonnegative Matrix Factorization,
have met only with limited success [10, 11]. Recently, deep
neural network based approaches have shown promise. In par-
ticular, deep clustering [12] and its variants [13] are a great step
forward towards single channel speech separation: A neural net-
work is trained to learn embeddings from the two-dimensional
time-frequency representation of the signal, such that embed-
dings belonging to the same source form clusters. For the com-
putation of the embeddings correlations in the speech signal

both in time and frequency direction are exploited. An attrac-
tive property of deep clustering is the fact, that the network is
not fixed to a predefined number of speakers. In fact, the num-
ber of speakers in the mixture may be different in training than
in testing and need not be specified beforehand. This stands in
contrast to other neural network based separation techniques,
e.g., the permutation invariant training [14].

While single channel source separation relies on spectral
properties of the speech signal, multi channel statistical model
based solutions exploit the spatial diversity of the sources. In
this contribution, we show how to integrate the two and exploit
both spectral and spatial cues jointly: The spectral properties
of the sources, which are captured by the deep clustering em-
beddings, and the spatial properties, which are represented by
the complex observation vector, are jointly exploited in an EM
algorithm to estimate time frequency masks for each speaker.
That way, we avoid the aforementioned frequency permutation
problem of multi channel model based approaches [7], mitigate
the need for a careful initialization and overall achieve better
separation performance.

The deep clustering model is trained off-line on a separate
training set, whereas the EM algorithm to estimate the mixture
model parameters and the masks is carried out at test time on
an utterance per utterance basis. Thus, the estimation is in-
dependent of the number of microphones and the microphone
configuration. The time frequency masks are then used to es-
timate power spectral density (PSD) matrices for each target
speaker and each target speaker’s interferences. These matrices
are then employed to estimate a generalized eigenvalue (GEV)
beamformer [15, 16], which is optimal in terms of the expected
output SNR gain.

We evaluate the efficacy of both the proposed hybrid EM
and the GEV beamformer on a setting as close as possible to
the original deep clustering contribution [12, 17]. However, we
give up their assumption of an anechoic environment and cre-
ate somewhat more realistic spatial observations by convolving
the clean speech with artificially generated room impulse re-
sponses. Although the proposed algorithm can conceptually be
extended to noisy data, we leave this for future work.

To thoroughly analyze, where the different gains come
from, we first reconstruct the approach by Isik et al. [17]: The
single channel deep clustering method is carried out on a ref-
erence channel, followed by a subsequent mask refinement net-
work. The resulting mask is then used as a gain function to
obtain a clean speech estimate, similar as in earlier works on
soft masks [18]. Subsequently, we replace the mask refinement
network and the masking step with the GEV beamformer to
measure the gains of a multi-channel model. With said beam-
former, we then compare different methods for mask estima-
tion: First, we directly use the deep clustering masks, obtained
by a k-means algorithm [19] from the deep clustering embed-
dings. Then we compare with a purely spatial model based
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Figure 1: Integrated EM algorithm with deep clustering embeddings as spectral features and normalized complex observations as
spatial features. Blue boxes indicate processing units. Green circles depict random variables, where doubly circled elements are
observable random variables, i.e. the embedding vectors ey do not change during EM iterations. Red boxes are model parameters

which are estimated during test time.

EM algorithm, which does not use deep clustering. Finally we
present results for the integrated mask estimation using deep
clustering and spatial models. Results are presented in terms
of objective signal quality measures. Further, we provide WER
results for selected systems.

2. Signal model

A convolutive mixture of K independent source signals s; s,
captured by D sensors is approximated in the STFT domain:

ytf:thkStfk+ntf7 (1
k

where y¢y, hyy and n, s are the D-dimensional observed signal
vector, the unknown acoustic transfer function vector of source
k and the vector of noise signals, respectively. Further, ¢ and f
specify the time frame index and the frequency bin index, re-
spectively. Since speech signals are sparse in the STFT domain,
we may assume that a time frequency slot is occupied either by
a single source and noise or by noise only.

3. Deep clustering

Similar to [12, 17] a multi-layered bidirectional long short term
memory network (BLSTM) [20] is trained on single channel
mixtures to map from the 7'- F' spectral features (log-magnitude
spectrum) to the same number of E-dimensional embedding
vectors e s, where |lecf||2 = 1.

The objective during training is to minimize the Frobenius
norm of the difference between the estimated and true affinity
matrix: 9 5
70)= |A -l =[Ee* —cc”, @

where A and A are the estimated and ground truth affinity
matrices. The entries A, ,,» encode, whether observation n and
n' belong to the same source (A,,»» = 1, and zero else). Cor-
respondingly, the embeddings are stacked in a single matrix E
with shape (T'F x E) and the ground truth one-hot vectors de-
scribing which time frequency slot belongs to which source are
stacked in a single matrix C with shape (T'F x K), such that
Chir = 1, if observation n belongs to source k and C),, = 0
otherwise.

During training, the network is encouraged to move em-
beddings belonging to the same source closer together while
pushing embeddings which belong to different sources further
apart. After training, the embeddings, which are normalized to
unit-length, can be clustered to obtain time frequency masks for
each source. The original work used k-means clustering.

4. Von-Mises-Fisher Time-Variant
Complex-Gaussian Mixture Model

A schematic overview of the proposed system is given in Fig. 1.
The complete algorithm is summarized in Alg. 1. In the follow-
ing, we described the individual components:

In general, an integrated spectral and spatial model is for-
mulated by factorizing the complete data likelihood function:

L= Hp(etf‘ztf :k, Hspectral) (3)
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where e; s and y, s are the spectral and spatial features, 2, are
the latent random variables and Ospectral and Gspatial are the
spectral and spatial parameters to be estimated at test time. This
decomposition is valid, if the spatial model does not make use
of spectral information and vice versa (compare [21]).

Possible spatial models for an integrated EM are, e.g.,
complex angular-central Gaussian mixture models (cACG-
MMs) [22], complex Bingham mixture models (cBMMs) [23]
and complex Watson mixture models (c(WMMs) [3, 4, 24] since
they operate on unit-length observations ¥.5 = y+s/||y¢s|l-

Another alternative is to use a time-variant complex Gaus-
sian mixture model (TV-cGMM) [9]. For this model, however,
the independence assumption of Eq. (4) is, strictly speaking,
not valid, because it models the complex observation vectors
Yy directly instead of the orientation vector y . However, the
power of each time-frequency slot, which is a spectral property,
is effectively factored out in each iteration, and therefore the in-
dependence assumption is still approximately valid. As shown
in the appendix of [22], the EM algorithms of the cACGMM
and the TV-cGMM are theoretically equal. Nevertheless, we
experienced the implementation of the TV-cGMM to be numer-
ically more stable, specifically in almost silent regions'.

Consequently, without constraining the integrated model in
general, we here use a time-variant (circularly-symmetric and
zero mean) complex Gaussian observation model for the spatial
features with decoupled variance and correlation matrices in a
similar formulation as in [25]:

P(yif|zes =k; Ospatiat) = TV-CG(y+s; ot sk, Ry)
_ 1
"~ det(7Ryx)
where Ry, is a spatial correlation matrix and o 73 can be inter-
preted as a (possibly scaled) local power estimate.
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'Normalization is re-estimated in each step and spatial covariance
matrices are unit-trace normalized.



Since the deep clustering embeddings are real-valued and
normalized to unit lengths, a von-Mises-Fisher (vMF) observa-
tion model is a suitable choice:

p(etf |th :k; espectral) = VMF(etf; Mk, Kk)
= conr (Rr)eHRS L (5)

where comr(kk), pk and Ky are the normalization term [26]
and the class-dependent mean and concentration, respectively.
Code for the EM algorithms are available online 2.
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where 7y are the frequency-dependent class weights and
~efk are the class affiliation posteriors (masks) for each time-
frequency point and each source.

4.2. M-step
Tk = w}k/Zﬂ'}k with 7}, = Z’thlm ®)
k t
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Although the concentration parameter xx has to be obtained
via an implicit equation, an approximation can be formulated in
an explicit way, where E is the embedding dimension [26]:

K —Mwithf =rell/ > (10)
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The parameters of the spatial observation model can be up-
dated as follows® [25]:
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5. GEV beamforming

The GEV beamformer has proven to be robust with respect to
numerical instabilities and yields high improvements in terms
of signal to noise ratio (SNR) gain as well as WER reduc-
tion, while often outperforming the frequently used minimum
variance distortionless response (MVDR) beamformer [15, 27].
Within this work, we will employ the GEV beamformer as a
means to separate concurrent target speakers. The GEV beam-
forming approach maximizes the expected SNR gain for a given
target k at the beamformer output z; s, = w?kyt s
W;Ik ‘I’xx,fkwfk
WGEV, fk = argmax TH &

wie  Wee®nn Wik
where wyy is the beamforming vector (weight vector) and
Dyx, i and Ppn pr are the estimated target and noise covari-
ance matrices:

Pox, fk = Z VeskYerYis Pon, k= Z%fk'thygf- (14)
t t,k' £k

; (13)

Zhttps://github.com/fgnt/dc_integration

3In practice, the correlation matrix inverse is obtained via an eigen-
value decomposition. That way, the inverse can be stabilized by clip-
ping the eigenvalue spread to i.e. 1010, Additionally, the determinant
can then be calculated as the product of eigenvalues.

Algorithm 1 Source separation algorithm for vYMF-TV-GMMs.
All steps are performed during test time.

: Calculate deep clustering embeddings e ;.

: Initialize affiliations ~y; s with k-means clustering on e; .
: while not converged do

E-step: Obtain masks ;¢ with Eqgs. (6) — (7).

M-step: Egs. (8) — (12).

: end while

: Calculate PSD matrices based on EM result with Eq. (14).
: Obtain GEV vector and BAN filter.

: Obtain source estimate with z; s = gBAN,fkngVJkytf.

© 0N R W~

Subsequently, a blind analytic normalization (BAN) postfilter is
applied to reduce speech distortions [15, 16].

6. Evaluation
6.1. Setup details

Single channel utterances from the Wall Street Journal cor-
pus [28] are mixed according to the file lists provided by
MERL*. The training, cross-validation and test set contain
20000, 5000 and 3000 mixtures, respectively. Training and test-
ing is only performed on mixtures with two sources, although
the deep clustering framework allows more speakers as well.
Since the source signals have different lengths, the images were
cut to the minimum lengths of both. The audio files are down-
sampled to 8 kHz and an STFT (size: 512, shift: 128) with a
Blackman window is applied.

We employed a deep clustering model with a similar ar-
chitecture as in [17]. We used four BLSTM layers and a single
fully-connected layer, where each BLSTM layer consists of 300
forward and 300 backward units and the feed forward network
consists of 257 units corresponding to the frequency bins [20].

The model is trained with stochastic gradient decent using
the ADAM [29] optimization scheme on the log amplitude spec-
trum of the clean features and uses ideal binary masks as targets.
Only the time frequency slots containing 98 % of the total en-
ergy were considered as bins occupied by speech. The gradients
of all other slots are zero. This leads to a faster convergence and
better results, since the model does not waste capacity on slots,
which do not belong to any of the target speakers.

To further improve the recipe, dropout with p = 0.5
dropout rate was used in the forward connections [30]. In con-
trast to [17] we did not observe any further gains neither with re-
current dropout nor weight decay. Instead of curriculum learn-
ing as in [17], we observed best results when training on entire
utterances for 100 epochs with a learning rate of 10~ and an-
other 100 epochs with a learning rate of 10™%.

Using sequence normalization [31] (batch normaliza-
tion [32], where statistics are obtained in time direction instead
of batch direction) also greatly enhanced convergence speed.

The test utterances are reverberated using the Image
Method [33] with different random reverberation times (see
Figs. 2 and 3). To do so, we randomly sample six micro-
phone positions (approximately on a circle with » = 20cm),
two speaker positions between 1 m and 2 m away from the ar-
ray center (no minimum angular distance enforced) and room
sizes with approximately 8 m x 6 m x 3 m. Subsequently, the
reverberated signals are mixed according to the MERL file lists.

To obtain meaningful word error rates, both hypothesis
transcriptions are compared with the reference transcription of

“http://www.merl.com/demos/deep-clustering



Table 1: Word error rates for selected models with random re-
verberation times Tso in the range 50 ms to 100 ms.

Model Extraction WER/ %
k-means + repair Masking 65.8
k-means GEV 424
VMF-TV-cGMM 0.9 GEV 29.7
TV-cGMM GEV 33.6

the shorter utterance as in [17]. Transcriptions are obtained
using the standard Kaldi WSJ recipe (GMM-HMM recognizer
as in [17] with LDA and MLLT trained on the train_si84
dataset (t ri2b model)) [34]. Please note that the training of
the deep clustering network as well as the training of the acous-
tic model have been carried out on non-reverberant speech.

6.2. Results

Figs. 2 and 3 show the SDR [35] gains and perceptual evaluation
of speech quality (PESQ) [36] gains for two different reverber-
ation conditions and a variety of separation methods (described
from left to right):

The baseline is the single channel system with an additional
repair network (two BLSTM layers, one fully-connected layer)
trained to enhance the single channel masks according to [17].
It provides the lowest SNR gains, which is plausible, since it
does not make use of more than one channel. In correspondence
to Tbl. 1, it leads to the worst WER.

Next, we use the deep clustering model and a simple k-
means, as in the original recipe. Additionally, we use the GEV
beamformer as in Section 5 on all six channels. As expected,
the gains are already much higher than with the original recipe.
It comes to no surprise that the gains are lower for the setup
with a higher reverberation time.

Now, the k-means clustering is replaced by an EM on
the von-Mises-Fisher mixture model (vMFMM). Although the
vMF concentration parameter can be updated during EM itera-
tions, it turned out to be more robust to keep it fixed: kK = 100.
The performance is almost the same as with the k-means algo-
rithm. This proves, that all further gains can not be attributed to
the vMF observation model itself.
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Figure 2: SDR and PESQ gains for different models with ran-
dom reverberation times Teo in the range 50 ms to 100 ms.

Next, we evaluate the integrated EM algorithm for different
exponential weights (3 for the spatial model, where the exponen-
tial weight for the spectral model is « = 1 — 8. As known from
integrating language models with acoustic models, it turns out,
that an optimal weighting between both models can improve
performance. Note, however, that changing the concentration
parameter « of the vMF observation model has the same effect
as changing the weights (exp(xpuTe)* = exp(aru’e).

Finally, we provide the TV-cGMM results, which are deep
clustering agnostic. Therefore, initialization was random and
the permutation problem had to be solved additionally. It can be
seen that the best results are obtained by the integrated model
which uses deep clustering and the spatial model. The best com-
bination achieved an SDR and PESQ gain of 16.9 dB and 0.43,
respectively, compared to 14.6 dB and 0.32 for the purely spa-
tial model with random reverberation times 740 in the range
200 ms to 300 ms.

Tbl. 1 shows the word error rates for selected models. It
can be observed, that the SDR and PESQ gains transfer to
WER improvements. The rather high absolute WERs can be
attributed to the fact, that the used acoustic model never saw
reverberated data and is just trained on the small train dataset
(train_si84).

7. Conclusions

Summing up, we presented a way to tightly integrate discrim-
inatively trained single-channel spectral models with a statisti-
cal model based multi-channel approach. We proved, that this
yields notable SDR, PESQ and WER gains in unseen test con-
ditions. We attribute this to the fact, that the statistical model
parameters are estimated during test time and that discrimina-
tively trained spectral models nicely transfer knowledge from a
training corpus.
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Figure 3: SDR and PESQ gains for different models with ran-
dom reverberation times T in the range 200 ms to 300 ms.
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