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Abstract

Acoustic beamforming can greatly improve the performance of Automatic Speech
Recognition (ASR) and speech enhancement systems when multiple channels are
available. We recently proposed a way to support the model-based Generalized
Eigenvalue beamforming operation with a powerful neural network for spectral
mask estimation. The enhancement system has a number of desirable proper-
ties. In particular, neither assumptions need to be made about the nature of
the acoustic transfer function (e.g., being anechonic), nor does the array con-
figuration need to be known. While the system has been originally developed
to enhance speech in noisy environments, we show in this article that it is also
effective in suppressing reverberation, thus leading to a generic trainable multi-
channel speech enhancement system for robust speech processing. To support
this claim, we consider two distinct datasets: The CHiME 3 challenge, which
features challenging real-world noise distortions, and the Reverb challenge,
which focuses on distortions caused by reverberation. We evaluate the system
both with respect to a speech enhancement and a recognition task. For the
first task we propose a new way to cope with the distortions introduced by the
Generalized Eigenvalue beamformer by renormalizing the target energy for each
frequency bin, and measure its effectiveness in terms of the PESQ score. For the
latter we feed the enhanced signal to a strong DNN back-end and achieve state-
of-the-art ASR results on both datasets. We further experiment with different
network architectures for spectral mask estimation: One small feed-forward net-
work with only one hidden layer, one Convolutional Neural Network and one
bi-directional Long Short-Term Memory network, showing that even a small
network is capable of delivering significant performance improvements.
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1. Introduction

Acoustic beamforming has been considered as a front-end processing tech-
nique for Automatic Speech Recognition (ASR) for many years. As early as
1990 Compernolle et al. showed that significant word error rate (WER) im-
provements are achievable by acoustic beamforming [1]. Research on acoustic5

beamforming has made great progress since then, including the use of novel
objective functions, such as the multi-channel Wiener filter, and the consider-
ation of arbitrary Acoustic Transfer Functions (ATFs) from the speech source
to the microphones, thus giving up the assumption of an anechoic delay-only
propagation path, see, e.g., [2] for a tutorial.10

While these modern beamforming concepts have been employed for speech
communication tasks, their use as a front-end in ASR was rather limited. Fur-
ther, with the recent success of ASR back-ends relying on Deep Neural Networks
(DNNs), the front-end acoustic beamforming needs reconsideration.

An obvious approach to handle multi-channel signals is to first employ a15

conventional beamforming approach to condense the multiple signals into one
signal which is then fed into a DNN back-end. Delcroix et al. have shown
that a strong DNN back-end can be significantly improved with a sophisticated
beamformer based on the Minimum Variance Distortionless Response (MVDR)
criterion [3].20

While this work showed the effectiveness of acoustic beamforming in a DNN-
based ASR system, only few multi-channel approaches exist which directly em-
ploy DNNs. Swietojanski et al. employed the logarithmic Mel filterbank features
of multiple acoustic channels as a parallel input to a Convolutional Neural Net-
work (CNN). They explored different weight sharing approaches and found that25

channel-wise convolution followed by a cross-channel max-pooling performed
better than multi-channel convolution [4]. This approach, however, has the in-
trinsic drawback that the information on the relative phases between the chan-
nels is lost, since current feature extraction methods are agnostic to the phase.
On the other hand it is well-known that in geometrically compact microphone30

array configurations the main difference between the signals of the individual
channels reside in their phases, not in their magnitudes.

An alternative approach to make use of multiple input channels for ASR is
to leverage temporal difference information between channels by directly work-
ing on the raw waveform, i.e., feeding the time domain signals into the DNN.35

Hoshen et al. reported noticeable performance gains over single-channel in-
put [5]. Following works are even able to achieve better results than a MVDR
beamformer [6, 7].

Others proposed to jointly train a MVDR beamformer and the acoustic
model [8]. Thereby, they use a DNN to estimate the beamforming weights for40

the MVDR beamformer given the Time Differences of Arrival (TDOA), perform
the beamforming operation, extract the features and finally use these features to
train an acoustic model. During this training, they are able to backpropagate the
cross-entropy error down to the network estimating the beamforming weights.

In this paper we adhere to the conventional approach of first condensing45
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multiple input channels to a single enhanced output signal to be fed to the
ASR back-end. However, we still make use of the recent progress in DNNs by
employing a neural network component in the estimation of the beamformer
coefficients. We consider the acoustic beamformer to be a multiple-input single-
output (MISO) linear time-invariant filter. A key concern is how to estimate50

the filter coefficients to extract the target signal while suppressing interferences,
exploiting the different spatial and spectral properties of the target and the
distortions. For the Delay-and-Sum Beamformer (DSB), the filter coefficients
can be derived from an estimate of the Direction-of-Arrival (DoA), if the geom-
etry of the microphone array is known. Note that the assumption underlying55

the DSB is that of an anechoic acoustic environment. If reverberation is to be
accounted for, the (relative) ATFs between source and sensors are estimated,
which usually requires an estimation of the statistics of the target speech signal
[9]. Further, advanced beamforming concepts also require an estimate of the
Cross-Power Spectral Density (PSD) matrix of the noise signal.60

These statistics can be obtained by estimating spectral masks for speech and
noise which are typically obtained by model-based methods, i.e. [10, 11, 12, 13,
14, 15, 16]. Instead of using a model-based approach, we recently proposed to
use a DNN to estimate those masks. A distinctive advantage of the proposed
neural network based mask estimation is that we explicitly account for time and65

frequency dependencies during mask estimation whereas most model-based ap-
proaches treat individual frequencies independently. This improves the accuracy
of the estimated signal statistics and hence the overall results [17]. Addition-
ally, making no assumptions about the distribution of the data for masking but
rather inferring it from the training data, we expect this approach to be more70

robust against different noise types and reverberation. Further, by carrying out
mask estimation for each channel separately and relying on microphone array
independent signal statistics renders the trained neural network parameters in-
dependent of the microphone array configuration. Thus our approach can be
applied to arbitrary array configurations. We can even cope with array config-75

urations at test time, which are different from those at training time but still
employ a powerful DNN in the multi-channel processing pipeline.

DNNs for mask estimation have been used in single channels speech en-
hancement for a while (e.g. [18]) and even extended to include the phase [19].
Although similar, the overall concept is different. In speech enhancement, the80

mask obtained from the DNN is directly applied to filter the signal. Whereas
here we still want to calculate the filter using our beamforming model. The
DNN becomes a component of this model by specifying the parts of the signal
we want to put attention to when calculating the statistics necessary for our
beamforming operation.85

In [20] and [17] we already considered such a setup with speech distorted by
additive noise. Here we employ the very same mask estimation and beamform-
ing concept for speech degraded by reverberation. To this end we assume that
the direct signal component and early reflections are the target signal and the
remaining signal components are the distortion. This split of the received signal90

is carried out by convolving the clean speech training data with the early and
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late part of the ATF, respectively. Note that it is not unrealistic to assume that
the acoustic impulse response is available, because for reverberant speech recog-
nition the training data is usually generated by convolving clean speech with
either a simulated or a measured impulse response. This is necessary because95

a training corpus consisting of true recordings in reverberant environments is
usually not available.

This article is organized as follows: In Sec. 2 we recapitulate our beamform-
ing concept, which is based on the Generalized Eigenvalue (GEV) beamformer
and show different ways to incorporate the estimated masks and to cope with100

the distortions introduced by the beamformer. Sec. 3 gives a detailed descrip-
tion of the mask estimator networks and their training. Finally, in Sec. 4, we
present ASR and speech enhancement results for the CHiME 3 and Reverb
database.

2. Acoustic beamforming105

In this work, we model an observed signal Y in the Short Time Fourier
Transform (STFT)-domain as the superposition of the target image X and a
distortion N. These distortions might be introduced by noise sources or by
reverberation effects:

Y(t, f) = X(t, f) + N(t, f), (1)

where t ∈ {1, . . . T} is the time frame index and f ∈ {1, . . . F} is the frequency110

bin index.
To suppress the distortions, we use the GEV beamformer which maximizes

the signal-to-noise ratio (SNR) of the beamformer output in each frequency bin
separately, leading to the beamformer coefficients [21]:

FGEV(f) = argmax
F(f)

F(f)HΦXX(f)F(f)

F(f)HΦNN(f)F(f)
. (2)

ΦXX(f) is the target and ΦNN(f) the noise PSD matrix for the f -th frequency.
Please note that this does not require any assumptions regarding the nature of
the ATF from the speech source to the sensors or regarding the spatial correla-
tion of the noise [21].115

The name of the beamformer stems from the fact that the maximization
of the Rayleigh coefficient given in Eq. (2) is achieved by solving a generalized
eigenvalue problem: The optimal filter coefficient vector FGEV is given by the
eigenvector corresponding to the largest eigenvalue of the following generalized
eigenvalue problem:

ΦXXF = λΦNNF. (3)

Hence, the solution only relies on the signal statistics, namely the target PSD
matrix ΦXX and the noise PSD matrix ΦNN. Note that Eq. (3) does not
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impose a constraint on the norm of F, and since each frequency is considered
independently, this can introduce arbitrary speech distortions.

In the following we consider three approaches to handle this issue. The first120

is to just ignore the distortions and normalize the principal component for each
frequency bin to unit length. This is a valid approach if the final goal is speech
recognition. As long as the same normalization is carried out in training and
recognition the acoustic model can absorb the speech distortions.

However for speech enhancement applications the distortions are unaccept-
able. In [21] the following single channel post filter to be applied to the GEV
output signal has been derived:

gBAN(f) =

√
FGEV(f)HΦNN(f)ΦNN(f)FGEV(f)/D

FGEV(f)HΦNN(f)FGEV(f)
, (4)

where D is the number of microphones. This filter performs a so-called Blind125

Analytic Normalization (BAN) to obtain a distortionless response in the direc-
tion of the speaker: The overall ATF from the target source to the post filter
output should have unit gain for every frequency bin. If this were achieved
perfectly, speech distortions would be removed and one would eventually arrive
at the MVDR beamformer [22, 23].130

In this work we propose a third method. We assume to have a reliable es-
timate of the target mask and can thus estimate the power of the target signal
in each frequency. Now, to minimize the distortions introduced by the beam-
former, we normalize the beamforming output to match this power distribution
over all frequencies.135

Why did we not use a MVDR beamformer, which is known to provide a
distortionless response in the first place? The reasons are fourfold: First, the
GEV concept provides an elegant way to estimate the beamformer coefficients
without explicitly estimating the (relative) ATF from the source to the sensors
(although this is done implicitly). When using the MVDR the ATF would have140

to be estimated explicitly. Second, the MVDR requires the computation of the
inverse of the noise PSD matrix, while this is avoided in the GEV formulation of
Eq. (3). We observed that this matrix inverse can lead to numerical problems,
in particular in frequency bins sparsely populated. Third, if the ATF estimate
is inprecise, arbitrary distortions are introduced nevertheless. Fourth, although145

the MVDR has been sucessully used in a similar setting [14], we observed overall
worse performance compared to the GEV beamformer [17].

The solution to the GEV problem of Eq. (3) requires the knowledge of the
the PSD matrices of the target and the noise signal. These are unknown in
general and need to be estimated.150

One way to estimate them is to employ non-overlapping masks, MX for
the target signal and MN for the distortion, respectively, and to calculate the
weighted sum of outer products of the microphone signals [24]:

Φνν(f) =

T∑
t=1

Mν(t, f)Y(t, f)Y(t, f)H, (5)
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where ν ∈ {X,N}. Here Y(t, f) is the vector of microphone signals at time
frame t and frequency bin f .

Using MN in Eq. (5) yields ΦNN. For the target PSD matrix ΦXX we con-
sider two variants. The first assumes that speech is sparse in the STFT domain
and that for the masked time frequency (tf)-bins the target is predominant and
the contribution from the distortion can be neglected. Then a tf-bin can be
attributed to either speech or noise. Under this assumption and the assumption
that speech and noise are uncorrelated, ΦXX can simply be calculated using

ΦXX =

T∑
t=1

MX(t, f)Y(t, f)Y(t, f)H. (6)

However, one may argue that the noise signal is not sparse and that a tf-bin
populated by speech may still exhibit a noise component. This leads, again
under the assumption that speech and noise are uncorrelated, to the second
variant where we calculate the target PSD as

ΦXX =

T∑
t=1

MX(t, f)Y(t, f)Y(t, f)H −ΦNN (7)

3. Neural mask estimator

The previous section showed that we can estimate the necessary statistics
for acoustic beamforming by masking the observed signals. As mentioned in the155

introduction, we obtain these masks with a neural network 1.
In order to be independent of the microphone configuration, we opt to esti-

mate the masks on each input channel separately, however sharing the weight
matrices and bias vectors of the neural network for all channels. We thus esti-
mate D speech and D noise masks. Those have to be condensed to a single mask160

for speech and noise for the estimation of the PSD matrices. This pooling could
be done by e.g. averaging, taking the maximum/minimum value, taking the
median etc. After some informal, preliminary experiments we chose the median
operation. The main reason for this choice is that it is immune to broken chan-
nels up to a certain extent. In the used CHiME 3 database for example, some165

channels did not record anything and the mask estimator classified all tf bins to
belong to noise. If we used minimum pooling in those cases the mask for speech
would be all zero. The opposite happens on channels where the speech mask
is very dense and we then use the maximum. In both cases, using the average
would also lead to distorted masks. The median, however, is not affected.170

In this work, we investigate three different network types for mask estima-
tion. The simplest one is a feed-forward (FF) network with just one hidden
layer. For the second configuration, we extend this network with an additional

1All networks in this work have been realized using Chainer [25]. An implementation to
train a mask estimator on CHiME 3 is available: https://github.com/fgnt/nn-gev
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Table 1: Network configurations for mask estimation

FF CNN BLSTM

L1 5643x513 (ReLU) 32x10x11 (CNN) 513x256 (BLSTM)

L2 513x1026 (Sigmoid) 3168x513 (ReLU) 256x513 (ReLU)

L3 - 513x513 (ReLU) 513x513 (ReLU)

L4 - 513x1026 (Sigmoid) 513x1026 (Sigmoid)

CNN and FF layer at the bottom to increase the modeling capacity while still
keeping the amount of parameters reasonable. The third network type uses a175

recurrent layer, namely a bi-directional Long Short-Term Memory (BLSTM)
layer, at the bottom to allow for arbitrary time context length. An overview of
the three different architectures is given in Tbl 1.

The input to the FF and the CNN network is a window of 11 frames of the
magnitude spectra of one channel. For the STFT we use a frame size of 1024180

and a frame shift of 256 (at a sampling rate of 16 kHz). Due to its recurrent
nature, the BLSTM network can exploit temporal dependencies of arbitrary
length and does not need multiple input frames at the same time.

The last layer of the network has always 1026 units and is split into two parts:
The first 513 units estimate the target mask IBMX, while the last 513 units185

estimate the noise mask IBMN. We do not force the values of the estimated
masks to be one or zero. Rather, we restrict them to be in the range between
one and zero using a Sigmoid non-linearity activation function of both estimates.
We also do not enforce non-overlapping masks or masks which sum to one for
each time-frequency-bin in any way.190

3.1. Weight initialization & optimization

We initialize all layers using a uniform distribution, e.g. W ∼ U [−a, a]. For
the BLSTM layer, a is 0.04, while for the Rectified Linear Unit (ReLU) layers
and the last layer a =

√
6/
√
nin + nout [26]. nin is the number of inputs and

nout the number of units of the layer. The biases are all initialized with zeros.195

We employ ADAM [27] for training. A fixed learning-rate of 0.001 and, for
the BLSTM network, full backpropagation through time [28] is used. Addition-
ally, if the norm of a gradient for this network is greater than one, we divide
the gradient by its norm [29].

To achieve a better generalization, we use dropout for the input-hidden200

connection of the BLSTM units [30] and for the input of the ReLU layers [31].
The dropout rate is fixed at pdropout = 0.5 for every layer during the whole
training. We never use dropout for the last layer. We use the development
data for cross-validation, stopping the training when the loss does not decrease
anymore after 5 epochs of patience.205
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3.2. Normalization

Instead of normalizing the input, we apply the batch normalization [32] for
each layer. Here, the activation a = Wu + b is replaced with a normalized
activation BN (a), where

BN (a) = γû + β (8)

and

û(k) =
Wku(k)− E [Wku(k)]√

Var [Wku(k)]
. (9)

with γ and β as learnable parameters. The normalization is carried out sepa-
rately for each unit k.

In contrast to the method proposed in [32], we do not use the population
estimates for the mean and variance at decoding time. This is done in the above210

paper to ensure that the output depends on the input in a deterministic way.
Changing the mini-batch size or using differently composed mini-batches would
lead to different outputs. In our case however, during test time, one mini-batch
(as seen by the layer inputs) comprises the features of one utterance. Hence, we
can just use the batch statistics and still get a deterministic output.215

3.3. Ideal binary masks as targets

We use ideal binary masks as training targets which are defined as:

IBMN(t, f) =

{
1, ||X(t,f)||

||N(t,f)|| < 10thN(f),

0, else,
(10)

and

IBMX(t, f) =

{
1, ||X(t,f)||

||N(t,f)|| > 10thX(f),

0, else.
(11)

respectively.
The two thresholds thX and thN are not identical. Their values range from

−5 to 10 depending on the frequency and are hand-tuned. They are chosen
such that a decision in favor of speech/noise is only taken if the instantaneous220

SNR is high/low enough to ensure a low false acceptance rate. This ensures
more reliable cross-power spectral density matrix estimates at the expense of
discarding some tf-bins which are categorized to be neither speech nor noise.

If the only source of noise is the reverberant speech (like for the Reverb
challenge), N is not clearly defined. We assume that the direct speech and its225

early reflections are beneficial, i.e., form the target signal, while the late rever-
berations are detrimental. When calculating the masks, we consider everything
attributed to the first 50 ms of the room impulse response as the target signal
and everything else as noise.
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3.4. Loss function230

The network is trained on all utterances and all channels using the binary
cross-entropy cost. With IBMν(t, f), ν ∈ {X,N} being the target mask and
Mν(t, f) the networks estimation for that value, the loss is given by

L = − 1

F

1

2T

∑
ν∈{N,X}

T∑
t=1

F∑
f=1

{IBMν(t, f) log2Mν(t, f)

+ (1− IBMν(t, f)) log2(1−Mν(t, f))}

(12)

To accelerate the training procedure for the BLSTM network, we process each
channel in parallel, exploiting the fact that they have the same amount of time
steps.

4. Experimental results

4.1. Databases235

To evaluate the robustness of the approach described above, we use two
distinct datasets. One is from the Reverb challenge and the other one is from
the CHiME 3 challenge.

The dataset form the Reverb challenge [33] contains SimData and Real-
Data with a vocabulary size of 5000 words. For the SimData utterances by 28240

different speakers are taken from the WSJCAM0 corpus [34] and are convolved
with three different room impulse responses. Noise is added at a signal-to-noise
ratio of 20 dB. The RealData set consists of 372 utterances from the MC-
WSJ-AV corpus [35]. These are a set of WSJCAM0 utterances rerecorded with
real speakers in a noisy and reverberant room. The set is divided into a far and245

a near set with distances of ∼ 100 cm and ∼ 250 cm. The training set consists
of simulated data only. This leads to a significant mismatch condition between
training and testing with RealData. Not only are the reverberation times dif-
ferent and the audio signal recorded rather than simulated, it is also a different
database with different speakers and recording characteristics.250

The dataset from the third CHiME challenge [36] features real and simulated
6-channel audio data of prompts taken from the 5k WSJ0-Corpus [37] with 4
different types of real-world background noise. Details are described on the
challenge website2 and in [36].

4.2. Speech enhancement255

To assess the speech enhancement performance, we use the Perceptual Eval-
uation of Speech Quality (PESQ) measure [38]. Since we need the clean target
audio data for the evaluation, experiments can only be carried out on the sim-
ulated data from the CHiME 3 and Reverb challenge. In the following we

2http://spandh.dcs.shef.ac.uk/chime challenge/data.html
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Figure 1: PESQ gain for different networks on the simulated CHiME 3 development data.
The average PESQ value for the unprocessed data is 1.27.

compare the different networks for mask estimation and the different normal-260

izations for the beamforming vector F.
For all plots, the top and the bottom of the box display the first and third

quartile, respectively. The line inside the box shows the median. The whiskers
indicate the data which lies within the 1.5 interquartile range. Dots above and
below indicate outliers.265

Fig. 1 shows the PESQ improvement in comparison to the 5-th input channel
for the CHiME 3 data. The differences between the three network types are
fairly small, with the CNN delivering the best gains on average. As expected,
the variant where the beamforming vector is normalized to unit norm achieves
hardly any improvements. Listening to the results, one can observe a high-270

pass characteristic of the enhanced signal. This is understandable because the
distorting noise has a low-pass characteristic. Shifting the signal power from
low to higher frequencies is, thus, beneficial in terms of maximizing the output
SNR, which is the objective function of the GEV beamformer.

Postprocessing the output can compensate for this effect and lead to bet-275

ter perceptual quality as measured by PESQ. In this noisy scenario, the pro-
posed normalization using the target power distribution over frequencies leads
to slightly better results than the BAN. An informal listening test confirms the
improvements by BAN and ”target norm”: The speech sounds more natural as
the lower frequencies contain more power after the postprocessing.280

The results for a reverberant environment are depicted in Fig. 2. We separate
the results according to the three different rooms available in the SimData. The
simulated rooms 1, 2, and 3 were considered examples of small, medium and
large-size rooms with room reverberation times (T60) of about 0.25 s, 0.5 s, 0.7 s,
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Figure 2: PESQ gain on the simulated Reverb development data. The average PESQ values
for the unprocessed data are 2.2 for Room 1, 1.37 for Room 2 and 1.32 for Room 3.

respectively.285

For room 1 we can see that the PESQ score output of the beamformer is
slightly worse than the observed signal in terms of perceptual quality. This can
be attributed to the very short T60 time of this room. There is hardly any
late reverberation and there are barely any tf-bins dominated by reverberation.
For room 2 and room 3 we get a different picture. Here, we get a measurable290

gain. In contrast to the noisy case, the BLSTM performs best, especially for
the room with the biggest reverberation. The CNN is noticeable worse in this
condition. Again, the postprocessing brings a performance gain and the ”target
norm” normalization achieves the highest score. But the gain compared to the
unit norm is far less than in the noisy condition. Also, listening to the results,295

the unit norm result sounds less distorted. This is understandable because
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here the distortion, i.e., the late reverberation, does not have the clear low-pass
characteristics as the noise in the case of the CHiME 3 data. Additionally, the
signal-to-distortion ratio (SDR) for the CHiME 3 utterances is far lower than
for the Reverb ones to begin with.300

Overall we conclude that a gain is achieved in both, noisy and reverberant
conditions, and that the proposed normalization based on the target power dis-
tribution over frequency achieves the best results with BAN being only slightly
worse.

4.3. Speech recognition305

In order to evaluate the speech recognition performance on both datasets
we use their respective Kaldi [39] baseline systems. Restricted by the available
computational resources, we conduct the comparison of the different networks
and normalizations with a computationally less demanding HMM-GMM sys-
tem. To show the full capability of our approach, we additionally train a strong310

acoustic model (configuration ”VD(X)” from [40]). The network consists of 8
convolutional layers and 3 fully connected layers on top of them. The convolu-
tional layers all have a filter size of 3× 3 and the number of channels increases
from 3 at the input (40 dimensional log-mel filterbank features + their delta
and delta-delta) to 64 and then doubles with every second convolution until it315

reaches 512 for the last convolutional layer. For further details we refer the
reader to [40]. This back-end is used in combination with the supposedly best
configuration, the BLSTM mask estimator with unit norm normalization and
Eq. (6). For decoding we use three different language models. The first one is the
regular WSJ 3-gram model which we also used for the other experiments. The320

other two, a 5-gram Kneser-Ney [41] and a Recurrent Neural Network (RNN)
language model, are used for rescoring and trained on the data provided with
the WSJ-database.

For the CHiME 3 data, the HMM-GMM system uses speaker adaptive train-
ing, the 3-gram language model from the WSJ-database and BeamformIt [42]325

as a preprocessing step to use the multiple channels. The Reverb system does
not include the speaker adaptive training and the beamforming step. It exploits
the fact that corresponding clean data is available and uses the alignment from
a model trained on this data as an initialization for the multi-condition training.
Other than that, it is comparable to the CHiME 3 system.330

Since we are testing many different configurations, we chose to only report
the results achieved on the real test data for both datasets to keep the tables
clear. Nevertheless, parameter-tuning is still done on the development set and
the results for the simulated data were within expectations for each configuration
(e.g. better than the results on the real data by almost a constant factor.)335

4.3.1. Comparison of networks and normalizations

Tbl 2 shows the WER for different configurations for the CHiME 3 data.
Again, there is only a minor performance difference regarding the network type
used for mask estimation. The BLSTM achieves the best result, but the margin
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Table 2: WER on the real evaluation data of the CHiME 3 challenge for different neural
networks, target PSD estimations and beamforming normalizations.

network Eq. (6) + BAN Eq. (6) Eq. (7) Eq. (6) + target norm

BLSTM 16.6 14.8 14.4 17.4
CNN 16.5 14.8 14.9 16.9
FF 16.2 15.2 15.4 16.7

Baseline 23.0

Table 3: WER on RealData of the Reverb challenge for different neural networks, target
PSD estimations and beamforming normalizations.

Eq. (6)
+ BAN

Eq. (6) Eq. (7)
Eq. (6)

+ target norm
distance network

far BLSTM 20.5 20.6 20.8 21.9
CNN 20.7 20.2 21.1 21.5
FF 20.0 20.0 20.0 19.1

near BLSTM 18.9 19.3 19.3 20.3
CNN 19.6 20.0 20.9 19.9
FF 17.1 19.0 18.0 16.9

far Baseline 42.0
near 43.5

is small. Regarding the normalization, the differences are larger. Compared to340

the speech enhancement results, the performance for the different normalizations
are inverted. The unit norm achieves the best results while the target norm is
significantly worse. This shows that perceptual speech quality and recognition
results are only loosely related and distortions introduced by the front-end do
not necessarily harm overall system performance. Concerning the calculation of345

ΦXX, there is hardly a performance difference between the use of Eq. (6) and
Eq. (7). It is, however, worth noting, that we can improve upon the baseline by
37% just by exchanging the beamformer.

Like with the speech enhancement, the result for the reverberant environ-
ment are slightly different as can be seen in Tbl 3. The difference between the350

normalization methods vanishes with BAN now achieving best performance, al-
beit by a very small margin. Interestingly, the simple FF now performs best.
Again, we achieve a significant improvement of around 50% compared to the
baseline, which, however, does not exploit the multiple channels. But even com-
pared with recently published works who do exploit the multiple channels the355

error rates are very competitive.
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Table 4: WER for the CHiME 3 database with different language models.

3-gram WSJ 5-gram KN RNN

simu dev 7.0 5.8 5.1
test 7.1 5.8 5.0

real dev 6.9 5.5 4.6
test 9.5 7.9 6.6

Table 5: WER for the Reverb database with different language models.

Room 3-gram WSJ 5-gram KN RNN

RealData far 13.7 12.2 10.9
near 13.5 12.0 10.6

SimData far 1 4.64 4.15 3.27
2 5.69 5.30 3.97
3 6.19 5.27 4.32

near 1 4.29 4.03 3.15
2 5.13 4.44 3.54
3 4.90 4.33 3.51

4.3.2. Results with strong back-end

As mentioned before, the results discussed until this point are generated us-
ing a HMM-GMM system. However, we not only want to analyze the behavior
of different configurations, but also want to explore the limits of our approach.360

To this extent, we combine it with a strong CNN-based back-end. The achieved
results for the two datasets are reported in Tbl 4 and Tbl 5 respectively. Com-
pared to the HMM-GMM system with the same language model, we achieve a
performance gain of 34% for CHiME 3 and around 24% for Reverb. This shows
that the beamforming approach does not eat up the improvements achievable365

further down the processing chain. Also, to the best of our knowledge, these
are the best results reported so far for these datasets with utterance-wise de-
coding (i.e., without adapting the model on the test data). Note, that we only
use one beamforming operation and the back-end to achieve these results. No
further enhancement is needed and we neither adapt to the speaker nor to the370

environment. We also did not modify or extend the training data in any way
for the mask estimator and the back-end. Regarding the sensitivity to a mis-
match condition between training and testing the results show that there is
indeed a big difference between the RealData and the SimData. But the
results of the challenge3 show that all systems exhibit this gap. We conclude375

3http://reverb2014.dereverberation.com/result asr.html
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that the proposed approach is not more sensitive to mismatch conditions than
other approaches. However, work remains to be done to close the existing gap.

5. Conclusions

Having shown the effectiveness of our neural network supported beamform-
ing approach for noisy environments before, this article demonstrates that the380

approach also generalizes well to reverberant environments. The transfer to a
distant speech recognition task did not require any modifications of the system
architecture. The only difference is in the definition of the distortion, which
is now given by the late reverberation. Once the training targets are properly
defined, no modification needed to be made to any of the system components,385

neither the neural network based mask estimation nor the beamformer or the
ASR back-end. Not even parameters needed to be adjusted when moving from
a noisy to a reverberant ASR task, thus demonstrating impressively the power
of learning systems.

The proposed neural network supported beamformer can be used both for390

speech communication purposes and for ASR. However, we noticed that a con-
figuration which is optimal with respect to perceptual quality is not necessarily
optimal for ASR, confirming previous results from other research groups. When
the enhancement is combined with a strong ASR back-end very competitive
word error rates are achieved both on the CHiME 3 and the Reverb challenge395

data.
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