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Abstract—In this paper, we present a hypothesis test for the
classification of moving targets in the sight of an automotive
radar sensor. For this purpose, a statistical model of the relative
velocity between a stationary target and the radar sensor has been
developed. With respect to the statistical properties a confidence
interval is calculated and targets with relative velocity lying
outside this interval are classified as moving targets. Compared
to existing algorithms our approach is able to give robust classi-
fication independent of the number of observed moving targets
and is characterized by an instantaneous classification, a simple
parameterization of the model and an automatic calculation of
the discriminating threshold.

I. INTRODUCTION

The detection of moving targets in the radar field, also
known as moving target indication (MTI), has been a major
research field at least since the development of ground map-
ping radar imaging techniques for military purposes. Here,
moving targets lead to a degradation of image quality, see
[1], since the image synthesis is based on the assumption of
stationary targets and moving targets must be elliminated. By
investigating the energy distribution in images generated by
Synthetic Aperture Radar (SAR) one can generate hypothesis
to identify dynamic targets, see e.g. [2], [3] [4].

For automotive radars, the classification of traffic objects
is an essential task, since dedicated control functions are
necessary especially in the context of highly automated driver
assistance functions [5]. Therefore these functions need exten-
sive information about the surrounding objects like their size,
position, class and trajectory.

Since radar signal processing offers just a limited mea-
surement space with geometric (relative distance and angle
of arrival) and kinematic (relative velocity) states, an ap-
propriate model for accurate classification is necessary and
SAR based MTI algorithms can not be applied. One example
where kinematic information is being used is the human gait
detection, where doppler-shifts (,,Micro-Doppler), introduced
by the different oscillating body parts of a human when
walking through a radar beam, are detetcted, see [6] [7].
However, a certain amount of oscillation is mandatory in order
to discriminate pedestrians from rigid moving targets. In this
paper, we present a simple method for the discrimination
of stationary and moving targets in the vehicle environment
without further classification of moving targets. The proposed
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algorithm can thus be understood as the primary stage of more
complex classification approaches. It is characterized by a
simple parametrization capability and enables instantaneous
classifications due to an exclusively forward-directed infer-
ence, while existing approaches classify stationary targets with
more complex tracking approaches [8] [9] or otherwise use a
iterative and thus computational expensive RANSAC approach
[10] which searches for major group of targets and classifies
them as stationary, thus is easily fooled if the majority of
targets stem from moving objects.

II. STATIONARY TARGET HYPOTHESIS

A. Model Synthesis

Modern automotive radar sensors are capable of resolving
the relative distance 75 (t), the relative velocity "7 (t) and
the angle of arrival "¢ 5 of a targets P in sight. .S describes
the sensor coordinate system with x being sensor normal and
R the coordinate system which is pointing towards the target
P, as drawn in fig. 1.

Figure 1: Coordinate transformation from sensor coordinates
(S) to relative and tangential components coordinate system
(R)

With the knowledge of the proper motion of the radar
platform, these quantities allow mathematical formulation of
targets to be derived. Here, a purely translational movement
between two objects in the plane is given. The initial position
is expressed by “75|,_,, the velocity vector by the components



Sv, and °v,, the angle of arrival "¢ in azimuth of the target

P, and the time ¢.
B [ cos("ps)  sin("¢s) R S,
= ( cotroy) (et (o)1)
(D

—sin("¢s)
Since we assume a pure translational movement between the
objects, the velocity vector in R can be given as

Ry, \ 0% S, - cos(Pog) + v, - sin(Fog)
(Rvy) oot < —Sv, - sin(fds) + v, - cos("ds) ) ’
2
In eq. 2, the upper line describes the radial and the lower line

the tangential component of the velocity.

Assuming that the incoming reflection is a stationary target
and the antenna platform moves exclusively in the °z direction
with a velocity ‘v, = wg,, that is a rectilinear motion, the

measured radial velocity between the radar sensor and the
reflector "v, can be given as

Vy = Ugy * cO8(Fohs). 3)

The quantities "v, and "¢4 are measured by the radar sensor
and the ego velocity vg,, by the wheel speed encoders of the
ego vehicle transmitted via vehicles signal interface. If eq. 3
is violated, the target may unlikely be a stationary target.

Since these quantities are generally noisy, eq. 3 usually
also fails with stationary targets. There is the necessity to
model the variables as statistical random variables and to
specify tolerance intervals by which the measured velocity for
a stationary target may deviate to some specified degree of
probability.

The velocity of the ego car under investigation is given by
VUpg.,» Which is usually been estimated by the product of the
parametrized tire diameter and the wheels angular velocity,
measured by the wheel speed encoders. The velocity estimate
is degraded by stochastic error due to sensor measurement
fluctuations, which we assume to be Gaussian distributed,
centered at the actual velocity value 4, -~ of the vehicle and
scaled with the variance o2 o We choose Gaussian distribution
as a model for V4, since the central limit theorem tells us, that
a sum of independet arbitrarily distributed random variables
converges always towards a Gaussian distribution [11].

R

2
(VEgo—H Vigyo)
1 v —

P 20 i
pVEgo(vEgo| Mg O'VEEO) = ¢ VEgo )
[2mo%
Ego

For the identification of pVEgo(vEgo Pvigo s O"2/Ego) and its param-
eters we drove with stationary ego-velocity of approximately
10ms~" on a straight path, measured the velocity output from
vehicle signal interface and compared it to the velocity mea-
sured by a precise Differential Global Positioning System with
Inertial Navigation System (DGPS-INS). The residuals of the
velocity were calculated and p,, = was calculated as the result-
ing histogram. The parameters of the corresponding Gaussian
distributed probability density function were also calculated
by means of maximum likelihood estimation (MLE). The

Bias: -0.08m/s
Standard Deviation: 0.03m/s
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Figure 2: Centralized Probability Density Function of observ-
ing ego-velocity vg,, from measurements (histogram) and from
Maximum Likelihood Estimation (red)

histogram and the MLE identification are shown in fig. 2. The
good match between histogram and identification confirms the
modeling of p,, ~as a Gaussian distributed random variable.
The default deviation was identified as oy, = 0.03ms™". In
addition, a bias of —0.08 ms~! was identiﬁed, which needs
to be subtracted from the measured velocity /i, from every
realization. It is important to mention, that the identified PDF
corresponds just to the here observed ego-car and could look
different for another car or at future time due mechanical
components wearout of the ego-car e.g. tires. It is also likely,
that the bias is variant to vg,,. However, for sake of simplicity
we assume the bias to be constant.

As a further Gaussian distributed random variable, the radar
measured variable ® which indicates the measured angle of
arrival of the raw target reflection in the ego coordinate frame,
is being modeled. The actual angle of arrival is used as the
mean value pg, by which the measured value is scaled with
the variance o2

1 _(p—pg)?
p@(¢|ﬂ@70§>) = \/ﬁe 2p (5)
P

To identify pq(¢|pe,02) for the radar sensor under investiga-
tion a point-shaped target (,,corner reflector) with a distance
of 20m was illuminated while the vehicle was in parking
position (vg, = 0ms~') over a period of 3 min in an otherwise
empty scenario for different azimuth angles. After the record-
ing, significant reflectors in sight were being detected and their
angle of arrival have been computed. The histogram and the
MLE identification for every azimuth setup were identified and
just the one with the highest angle uncertainty (o, = 0.96°)
was picked for later paramatrization (histogram and identi-
fication shown in fig. 3), since this marks the worst case
scenario. Some gaps in the histogram are observable, which
are caused by rounding errors due to data type conversions



in angle calculation. It should be noted that the modeling
as a Gaussian distributed random variable also leads to a
representative distribution density.

Standard Deviation: 0.96°

B Histogram
0.4 === MLE Gaussian ||
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Figure 3: Probability Density Function of observing angle of
arrival ¢ from measurements (histogram) and from Maximum
Likelihood Estimation (red)

Lastly the remaining variable "v, is also modeled as Gaus-
sian, since this will provide convenient calculus as can be seen
later

R 2
(Tvz—ppy )

- T ©

pr,, (Fv, Ry, , 0%, ) = ————¢

We identified the parameters of this probability density func-
tion by recording stationary targets whilst standing still with
the radar sensors over a period of 3min. The histogram and
the MLE identification of the recorded relative velocities are
shown in fig. 4. This resulted in the standard deviation of
roughly or,, = 0.0lms~". It should be mentioned, that the
digital resolution lies within the estimated standard deviation,
thus approximating as a continuous function introduces some
source of error, which is not paid attention to further on due
to the comparable small uncertainty in “v,.

Assuming that the random variables VFgo and P are indepen-
dent and the angle interval is limited to —Z < ¢ < Z, their
compound distribution results in

= pVEgu (/UEED)pcos(é) (¢)
1

\/477 oz 02(1—cos?(¢))

((UEvo qugo) <(¢—Hq>)2+(—<f>—uq>)2>)
P) o 2
Vigo ES ES

Pvigycos(@) (vF_gm ¢))

l\?h—t

e .
)

The computation of the likelihood p, (v) that a certain
realization v of the velocity for an expected stationary target

is being observed for a given parameterization can be obtained
by integrating the compound distribution py co(a) (Vggor @)

Bias: -0.00m/s
Standard Deviation: 0.01m/s

Emm Histogram
30 === MLE Gaussian ||
T 20
a9
@)
~
10 .
h
0
—0.4 -0.2 0 0.2 0.4
v, in m/s —

Figure 4: Probability Density Function of observing relative
velocity ®V, from measurements (histogram) and from Max-
imum Likelihood Estimation (red)

taking into account the multiplicative influence of the random
variables according to eq. 3 (see [12]).

* v
pfw ('U) = pVEg(,,cos(q)) UEgm
— 00 vEgo

No closed form solution for this integral form is known,
so in the following step approximations through numerical
integration as well as function approximation are given.

RS
dvEgo (8)

UEgo

B. Approximate solution of the Marginalization

1) Numerical Approximation: Since realizations of V;,, and
® can be drawn easily, in this subsection, the results of Monte-
Carlo simulations, approximating the probability of drawing v
under the condition of a stationary raw target, is given. Here,
Up, and ¢ are drawn according to their distribution densities
and associated according to eq. 3 into a single realization
of observing the expected radial velocity. After sufficient
N draws, here N = 1000000, the calculated velocities are
represented as normalized histograms (see fig. 5), which gives
an approximation of the distribution density vago-cos@)(”U)-

In this paper the variances are assumed to be invariant
from the corresponding mean value, so that the shape of the
histogram is modulated exclusively by means of the variable
v, and . To illustrate the influence of different param-
eterizations, all combinations of My, € {0,20}ms™" and
i € {0,90}° are simulated and the resulting marginalizations
are shown in fig. 5.

Drawing a representative set from the distribution function
D,, and subsequent histogram mapping is not possible on a
hardware such as a radar sensor with very limited resources
of memory and CPU. Alternatively, an approximation of
the distribution density is sought, which represents the true
distribution density sufficiently accurately.
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Figure 5: Probability Density Functions through Monte-Carlo
simulation (Histogram), the approximated PDF (green) and the
confidence intervalls (red) for different parameter values

2) Approximation through Gaussian: Since there is no
closed form solution for the marginalization, an approximation
is made for given parameter values. As suggested in [13] and
[14], the product of two normal-distribution random variables
with the mean values p, and j, and the variances o2 and o?
can be approximated by another Gaussian distributions with
resulting mean and variance given as

E(XY) = pxpy 9

(10)

To use this knowledge, the distribution density p...(e)(®)
surely must be approximated by a Gaussian distribution be-
forehand. Therefore, a second order Taylor approximation of
cosine at the point i, is performed and its statistical properties
are being computed alternatively. Development beyond the first
degree is required, otherwise the variance would disappear at
the point sin(uq) = 0.

Var(XY') = o5 + pyox + 030y,

1
~3 cos(ptae) (P — pa)®
(11)

The mean value i, of the Taylor approximated distribution
cos(®) can be calculated as

cos(®) & cos (1) — sin(j1a) (6 — j1a)

fi = Bleos(iua) — sin(ua) (6 — pia) — 5 05(112)(6 — 1)’
3 cos(fiqg)02.

Here we utilize the fact, that the expected value of the sum of
two random variables is equal to the sum of the expected value

= cos(pte) — (12)

of each individual random variable. Since ¢ stems from a
Gaussian distribution, its first order central moment disappears
and its second order central moments is equal to its variance.

The variance 62 of the Taylor approximation can be com-
puted as follows

, 1
2 =sin’(uqg)os + 3 cos® (g )0y
Here it is good to know, that the third order central moment
of a Gaussian corresponds to 3o*.

The approximated Gaussian distribution of a cosine trans-

formed Gaussian can now be expressed as

& (13)

1
= cos(jta)0%,

cos(pa) = 5

Peoss (c08(0)) ~ N < cos(¢)

1
sin®(uq)ol + 3 COSQ(M(I,)U;). (14)
By approximation the distribution p....s)(cos(¢)) as a Gaus-
sian distributed variable, the parameters of the likelihood
Ps, (v) can now been given according to eq. 9 and 10

o, = Hviggo P

1
= vy, (cos(,uq)) ~3 cos(uq))a;) (15)

A2 __ 2 A2 ~N2 o2 2 a2
Oy, = :qugoo—cp + :u‘q>UVEgo + UVEgo Os

. 1
=i, (s G)0% + 5 cos )

1 2
+ <cos(uq>) B cos(,uq,)afp) ol

VEgo

1
+ (sinz(uq))ai + = COSQ(,LLq))O'i) ol

2 VEgo

(16)

To combine the relative velocity of a stationary target given
¢ and vy, with the radar velocity measurement, we compute
the residual e between the measured relative velocity "v, and
the estimated velocity of a stationary target o,

—,. (17)

The difference of two Gaussians can be given as another

Gaussian py(e) with mean and variance given in eq. 18 and
19.

s = E("V. = V.) = pny, — fiv, (18)
o2 = Var("V, - V,) = ok, + 62 (19)

C. Testing against Hypothesis

The approximated likelihood py(e) is now used as a feature
for testing the null hypothesis H, of stationary radar targets.
This hypothesis states that if the radar velocity measurement
lies outside the confidence interval associated with the level of
significance «, the target is most likely not a stationary target.



This test is described mathematically by the null hypothesis
from the following inequalities

reject Hy, if e < pip — 05 - Q '(0/2)

ore> pp+og-Q ' (af2). (20)

The alternative hypothesis H, expresses the complementary
case, which means that the radar target is a moving object.

IIT. RESULTS

To generate an statement for the classification accuracy
in total 3min of real world driving scenarios have been
recorded and the raw targets were labeled as stationary or
moving. In order to vary the dynamic driving maneuvers, the
measurements were varied with different driving velocities
and accelerations and a pedestrian walking parallel to the
direction of travel as well as stationary objects. Here, a
pedestrian was used as a reference for moving objects, since
its relative velocity deviates only marginally from stationary
objects and thus is particularly challenging. For the labeling
task, the ground truth positions of pedestrians thoraxes have
been recorded via DGPS-INS and every target within a range
of 0.5m, corresponding to a normal pedestrians step size,
around these positions has been labeled as moving, whilst
others as stationary.

Since the overall classification accuracy highly depends on
the level of significance «, the Receiver Operating Charac-
teristic (ROC) is computed for different parametrizations, see
fig. 6.
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False positive rate

Figure 6: Receiver Operating Characteristic with stationary
targets as positives and color coded o

Here, the true positive rate describes the probability of
detecting a stationary target, while on the other hand, the false
positive rate describes the probability of the misclassification
a moving target as a stationary target. The best overall per-
formance, represented by the biggest distance from the ROC
curve to the diagonal line, has been recorded at o = 0.5%
corresponding to Q~'(a/2) = 2.794, which is used further
on.

In fig. 7, a raw target cloud is displayed. Here the raw
targets were divided into moving and stationary targets using
the hypothesis test. For the scenario, an ego-vehicle equipped
with a rear-facing radar sensor passes at a constant speed of
about 20kmh~" a parallel walking pedestrian. The targets
corresponding to pedestrians are correctly classified as moving
targets. Stationary raw targets resulting from ground and curb
reflections are mostly identified as static.
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Figure 7: Bird view of radar target point cloud with Ego-
Vehicle (car image), walking Pedestrian (black), stationary
classified Raw-Targets (green) and dynamic classified Raw-
Pargets (red)

To provide an objective statement describing the accuracy of
the proposed algorithm, the confusion matrix was computed,
see table L.

Table I: Confusion matrix - proposed algorithm, any |“¢s|

Prediction
Moving | Stationary
Actual
Moving 88.0% 12.0%
Stationary 6.2% 93.8%

The confusion matrix reflects the subjective perception by
which the number of correct classifications clearly dominates.
In the confusion matrix it can be observed, that the percentage
of misclassified stationary targets is 6.2% which is worse
than the expected value of 0.5%, which was parametrized
by the level of significance @ = 0.5%. After examining the
classification of the radar targets in the measuring plane, it
was found that the incorrectly classified stationary raw targets
mainly result from multipath reflection between the pedestrian
holding a highly reflecting corner and the ego-vehicle (see
fig. 7 on the right), which have not been hand labeled as
moving targets.

We found out, that the main source of misclassification for
moving targets is contributed due to the disappearing relative
velocity of parallel moving and stationary targets at angle
areas of |uq] = 90°, cf. fig. 1. To quantify this, we computed



the classification accuracy for different observation angles, as
can be seen in fig. 8. Also we found, that the degradation

T 100 L "“ ! " "’\ I

© 80 Y \’/ |l
£ 60

Z 40 H - ~
é = oving target

3 20 stationary target

Q 0 T T

= o 20 40 60 80

e in° —
Figure 8: Classification accuracy over observation angles

in classification of moving targets, especially observed at
30° < |pe| < 50°, stems from very slow moving or stationary
targets within the moving target annotation area which could
stem from ground reflections or as very slow moving body
parts of the pedestrians like ground touching legs, cf. fig. 7

To compare these results to existing algorithms, the con-
fusion matrix of the RANSAC based classification algorithm
from [10] is given, see II.

Table II: Confusion matrix - RANSAC algorithm from [10]

Prediction
Moving | Stationary
Actual
Moving 87.3% 12.7%
Stationary 6.1% 93.9%

Obvious significant differences in overall accuracy between
the algorithms can not be observed, however, we found that
the RANSAC algorithm suffers to discriminate moving targets,
when the majority of targets stem from moving objects. This
is due to the fact, that the algorithm assumes that the majority
of targets stem from stationary targets.

Beside the classification accuracy, the computation require-
ments of both algorithms were tested on our series production
radar hardware. It was observed a > 95% computation time
improvement and similar improvements in memory consump-
tion. The cause of this lies in the fact, that the proposed
algorithm provides explicit inference, whilst the RANSAC
approach needs iterative operation.

For the proposed algorithm, except for the level of sig-
nificance o which is choosen accordingly to the expected
error probability of stationary targets, all required parameters
can be measured statistically with respect to the radar and
car configuration directly, whereas the RANSAC algorithm
requires parametrizing the number of initial target picks, a
prescribing targets distance for discriminating moving targets
and a maximum number of allowed iterations [10], which need
to be chosen heuristically.

IV. CONCLUSION

In this paper, we have presented a hypothesis test for the
identification of moving radar targets in which the statistical

properties of radar and ego vehicle speed measurement are
taken into account. The aim was to discriminate the raw targets
from a single measurement, without having to resort to com-
plex tracking procedures or to utilize demanding RANSAC
algorithm. It was shown by means of measurements that the
modeling of relevant variables as normal distributed random
variables is plausible and the resulting confidence intervals,
as discriminating thresholds, for stationary targets are given.
On the basis of this, a reliable classification was carried out,
even with slow moving objects such as pedestrians. Multipath
reflections between moving objects and the ego-vehicle was
blamed for occasional misclassifications of stationary raw tar-
gets in the vehicle environment. The main accuracy reducing
facts for moving targets is the disappearing relative velocity
for tangential movement. Also very slow moving targets
near pedestrians center have been recorded and annotated as
moving, while the classifier marks them as stationary. These
slowly moving targets could have stem from ground reflection
or as reflections from very slow moving body parts of the
pedestrian. However, this misclassification is unintentionally
and we see a possible solution in algorithms, which take
neighboring targets into account in the classification step and
thus be able to give classification to target clusters.
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