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Abstract
This paper is concerned with speech presence probability
estimation employing an explicit model of the temporal
and spectral correlations of speech. An undirected graphi-
cal model is introduced, based on a Factor Graph formula-
tion. It is shown that this undirected model cures some
of the theoretical issues of an earlier directed graphical
model. Furthermore, we formulate a message passing in-
ference scheme based on an approximate graph factoriza-
tion, identify this inference scheme as a particular message
passing schedule based on the turbo principle and suggest
further alternative schedules. The experiments show an im-
proved performance over speech presence probability esti-
mation based on an IID assumption, and a slightly better
performance of the turbo schedule over the alternatives.

1 Introduction
Speech Presence Probability (SPP) estimation refers to the
estimation of the presence of speech in the Short Time
Fourier Transform (STFT) domain at the resolution of indi-
vidual time-frequency (TF) bins. SPP estimators are used,
e.g., in several state-of-the-art noise tracking algorithms
[1], for a-priori SNR estimation [2], or for mask estimation
in acoustic beamforming [3] and therefore are an important
component of modern speech enhancement systems.

SPP estimators exploit the correlations of the signal
in time and/or frequency direction in some way or an-
other. In a popular approach, the SPP estimation relies on a
decision-directed estimate of the a priori signal-to-noise ra-
tio [4], which in turn depends on the clean speech estimate,
thus coupling SPP estimation and speech enhancement.
Gerkmann et al. decouple the two and employ spectral
and temporal smoothing of the a posteriori SNR and the
SPP using heuristically chosen parameters [5], while Mo-
meni et al. apply a sliding window directly to the complex-
valued observations in the STFT domain to determine the
statistics of the signal and noise, from which in turn the
SPP is estimated [6].

Tran Vu and Haeb-Umbach propose a formulation
that directly models the underlying statistical dependen-
cies in time and frequency direction, employing a two-
dimensional hidden Markov Model (2DHMM) [7]. For
each TF-slot a latent binary variable is introduced which
indicates presence or absence of speech. The temporal and
spectral correlations of a speech signal are then captured by
the transition probabilities of the 2D Markov grid, which
can be learned in a training phase. An efficient inference
algorithm has been developed which is an instance of the
turbo principle known from coding literature [8].

In this paper we extend and generalize this approach
in two important aspects. First, we propose an equivalent
Undirected Graphical Model (UGM), i.e., a Markov Ran-
dom Field (MRF), and show that this has important the-
oretical advantages over the directed HMM. While MRFs
have already been used in speech enhancement for provid-

ing an MMSE estimator for the spectral amplitude [9], they
are employed here for SPP estimation for the first time.
Second, viewing the aforementioned turbo algorithm as a
particular message passing scheme for inference in graph-
ical models with loops, alternative schemes will be inves-
tigated, thus introducing general factor graph decoding as
an approach to SPP estimation.

The remainder of the paper is organized as follows. In
Section 2, the signal model is presented, and the SPP es-
timation problem is formulated. Section 3 introduces the
UGM, a Factor Graph formulation and the inference algo-
rithm. The UGM is contrasted with the Directed Graphical
Model of [7] in Section 4, giving reasons why the UGM
is to be preferred. In Section 5, the inference algorithm is
generalized to different message passing schedules based
on differing propagation paths through the graph, while
Section 6 provides an experimental comparison of differ-
ent scheduling types with respect to their performance on
the SPP estimation task.

2 Problem Formulation
As usual, our signal model is formulated in the STFT do-
main and assumes an additive mixture of speech and noise.
According to [7], a latent binary variable Z(m,k) is intro-
duced which indicates presence or absence of speech:

X(m,k) =

{
N(m,k) if Z(m,k) = 0,
S(m,k)+N(m,k) if Z(m,k) = 1,

(1)

where 1≤m≤M is the STFT frame index, 1≤ k ≤K is
the frequency index, S(m,k), N(m,k), and X(m,k) are
the STFT Coefficients corresponding to the speech, noise,
and observed microphone signal, respectively.

Following [5, 7] observations will be modeled in terms
of the a-posteriori SNR

ζ(m,k) = |X(m,k)|2/Φ̂NN (k), (2)

rather than of the microphone signal directly. Here,
Φ̂NN (k) is a (coarse) estimate of the noise power spectral
density. With the assumption of complex Gaussian dis-
tributed random noise, the observation likelihood is com-
puted from an exponential distribution with a parameter
depending on the latent variable:

p(ζ(m,k)|Z(m,k)=i) = λi exp(−λiζ(m,k)). (3)

Here, λ0 = 1 while λ1 depends on the a-priori SNR and is
set empirically.

The task of SPP estimation is the inference of the pos-
terior probability of the latent variable:

γ(m,k) = Pr(Z(m,k) |X(1:M,1:K)) . (4)

Here, 1:J denotes that the corresponding index variable
runs from 1 to J . Thus, in the above equation, the obser-
vations from all frames and frequencies are employed for
the estimation of Z(m,k).
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Figure 1: Part of the factor graph for the Undirected Model

It is assumed that the observations are conditionally in-
dependent if the latent variables are known. Therefore, all
dependencies are modeled by the latent variables. The SPP
can in theory be calculated by applying the Bayes Theo-
rem, factorizing into the joint state probability and the ob-
servation likelihoods, and marginalizing over all state vari-
ables except Z(m,k):

Pr(Z(m,k)|X(1:M,1:K)) (5)

∝ ∑
∼Z(m,k)

Pr(Z(1:M,1:K)) ∏
∀(m,k)

p(X(m,k)|Z(m,k)),

where the operator ∑∼x is taken from [10] and represents
summing over all variables except x. However, a direct
calculation of the marginalization is not tractable in prac-
tice as it requires 2MK−1 additions where MK is usually
in the order of 105. To handle this issue, it is necessary
to constrain the statistical dependencies between the latent
variables.

The following sections cover different formalisms to
introduce reasonable constraints with the help of graphical
models.

3 Undirected Graphical Model
In this Section an Undirected Graphical Model (UGM) is
proposed to model temporal and spectral correlations in a
speech signal. UGMs are also known as MRFs in the lit-
erature [11]. The Factor Graph framework is used [10] to
provide a higher cohesion between the mathematical for-
mulation and the graphical representation. This has the
advantage of explicitly visualizing the statistical depen-
dencies and allows for a greater flexibility in the inference
scheme as explained later.

A local subsection of the graph is shown in Fig. 1.
Here, the horizontal direction corresponds to the time axis,
while the vertical is the frequency axis. A blue circle in-
dicates a random variable (the speech presence Z(m,k) in
the corresponding TF slot). Here, the factor graph style of
[10] is used where statistical dependencies are captured by
the square-shaped factor nodes while the variable nodes
are circular shaped nodes. Observation likelihoods are
represented as factor nodes as well since the observations
X(m,k) are fixed. Using this graphical representation, the
joint state probability is assumed to factorize as

Pr(Z(1:M,1:K)) ∝ ∏
(zi,zj)∈P(Z(1:M,1:K))

T (zi, zj), (6)

μ↑(m,k)

μ↓(m,k)

μ←(m,k)μ→(m,k)

μo(m,k)

(a) Horizontal factorization

μ↑(m,k)

μ↓(m,k)

μ←(m,k)μ→(m,k)

μo(m,k)

(b) Vertical factorization

Figure 2: Factorizations with message flow

where P(Z(1:M,1:K)) is the set of all possible state pairs
in Z(1:M,1:K) as given by the graph, and T (zi, zj) is the
dependency factor capturing the statistical dependency be-
tween a pair of nodes. It is an undirected analog to the tran-
sition matrix entries in the 2DHMM and can be identified
as a two-node potential function in the context of MRFs.
Similar to [12], the dependency factors are defined as

T (m−1,m;k) =
Pr(Z(m−1,k),Z(m,k))

Pr(Z(m−1,k))Pr(Z(m,k))
,

T (k−1,k;m) =
Pr(Z(m,k−1),Z(m,k))

Pr(Z(m,k−1))Pr(Z(m,k))
, (7)

where T (m−1,m;k) := T (Z(m−1,k),Z(m,k)) is used
for brevity. This still allows the interpretation as a (scaled)
probability. Furthermore, the factor is a symmetric func-
tion with respect to the state variables Z(m,k) and does
therefore not introduce a directivity as conditional proba-
bilities would do.

Unfortunately, the sum-product algorithm given in [10]
is not directly applicable to perform inference, because the
given latent state variable structure as shown by Fig. 1 ex-
hibits a grid with tight loops. If only vertical or horizon-
tal connections existed, the model would reduce to sev-
eral independent chains and the inference problem could
be solved by running a modified version of the forward-
backward algorithm [13] for each chain. However, this
assumption would drop the information carried in the ne-
glected direction and is therefore discarded.

Instead, similar approximations as introduced in [7] are
used: A local horizontal (i.e. time-directed) tree structure
for a fixed frequency index k can be obtained by neglect-
ing all horizontal connections for other frequencies. This
results in a single horizontal chain with connected verti-
cal (i.e. frequency-directed) chains as pictured in Fig. 2a.
The posterior for a specific node Z(m,k) on the horizontal
chain can be factorized into a product of messages under
the induced independency assumptions:

γH(m,k) ∝p(X(m,k),Z(m,k))

·p(X(1:m−1,1:K)|Z(m,k))

·p(X(m+1:M,1:K)|Z(m,k))

·p(X(m,1:k−1)|Z(m,k))

·p(X(m,k+1:K)|Z(m,k)). (8)

The factors can be interpreted as messages:

γH(m,k) ∝ ∏
d∈{o,←,→,↑,↓}

μH
d (m,k), (9)
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where the messages are indexed with the message direction
or o for an observation message, and the superscript H de-
notes the horizontal approximation. Note that the order of
messages under the product symbol in Eq. (9) corresponds
to the order of terms in Eq. (8) for ease of correspondence.
With the exception of the observation message, all mes-
sages denote the likelihood of a subgraph of observations,
conditioned on the current state variable.

In contrast to [10], the variable-to-factor message and
the factor-to-variable message are combined into a single
variable-to-variable message type, as each factor node is
connected to a maximum of two variable nodes.

If the vertical forward and backward messages are
combined with the observation message, the result con-
tains the information of all frequencies for the current time
frame:

μH
↑ (m,k)·μH

↓ (m,k)·μH
o (m,k) = p(X(m,1:K),Z(m,k)).

(10)

Using this, ordinary forward and backward runs can be
performed along the chain. The forward message can be
factorized as follows:

μH
→(m,k) = ∑

Z(m−1,k)
T (m−1,m;k)∏

d∈{→,o,↑,↓}
μH
d (m−1,k). (11)

An equivalent recursion exists for the backward message:

μH
←(m,k) = ∑

Z(m+1,k)
T (m,m+1;k)∏

d∈{←,o,↑,↓}
μH
d (m+1,k). (12)

This scheme can be repeated for every horizontal chain.
An equivalent approximation for the vertical direction ex-
ists as shown in Fig. 2b with equivalent messages

μV
d (m,k), d ∈ {↑,↓,←,→,o}.

Using both approximations, each of the messages with d ∈
{↑,↓,←,→} exists in a ’wide’ and a ’narrow’ version, e.g.

μH
→(m,k) = p(X(1:m−1,1:K)|Z(m,k)) (wide),

μV
→(m,k) = p(X(1:m−1,k)|Z(m,k)) (narrow).

To arrive at an iterative message passing scheme, this dis-
tinction is dropped and only the wide versions are kept:

μ←(m,k) = μH
←(m,k), μ→(m,k) = μH

→(m,k),

μ↑(m,k) = μV
↑ (m,k), μ↓(m,k) = μV

↓ (m,k).

Now, the messages from one direction can be used in turn
to provide the replacement observation for the other direc-
tion as given by Eq. (10), resulting in an iterative inference
scheme. This is an application of the turbo principle known
from coding literature [8].

4 Comparison with Directed Model
In [7] a two-dimensional Hidden Markov Model
(2DHMM) was proposed, which represents an in-
stance of a Directed Graphical Model, also known as a
Bayesian Network. While it was shown to be a viable
approach in practice, it suffers from some theoretical
caveats:

X(m,k)

Z(m,k)Z(m−1,k)

Z(m,k−1)

Figure 3: Horizontal factorization of Directed Model
showing head-to-head relation

• The Bayesian Network of the Directed Model with the
horizontal approximation as shown in Fig. 3 reveals an
instance of a head-to-head relation: Z(m−1,k) and
Z(m,k−1) are not statistically independent anymore
if Z(m,k) or X(m,k) is observed [11]. Therefore,
the factorization proposed in [7], which is equivalent
to Eq. (8) above, is not compatible to the graph ap-
proximation.

• The directed model implies a semantic of causality in
the state sequences because a defined predecessor state
exists. While this may be plausible for the time di-
rection, the semantic of a predecessor does not really
make sense for the frequency direction.

• With a frequency-dependent transition model, the ver-
tical HMM is inhomogeneous and no stationary distri-
bution exists to be employed as an a-priori state prob-
ability. Instead, a Markov iteration for every vertical
chain has to be executed. Furthermore, the a-priori
state probabilities in time and frequency domain do not
necessarily match, e.g. the transition models are usu-
ally contradictory. This property is not carried over to
the UGM, where the a-priori state probability is de-
fined up-front and the dependency factors depend on
it.

Although the UGM is theoretically more appealing, com-
parison experiments between the two models did not show
a significant difference. Nevertheless, we favor the UGM
due to its higher flexibility and more compact formulation.

5 Scheduling
The inference scheme described in Section 3 can be viewed
as an instance of the sum-product algorithm on a loopy
graph with a particular message passing schedule. The
message passing is visualized for a small example graph
in Fig. 4. Note that only the variable nodes are shown in
these timing diagrams. For reasons explained above, this
schedule will be referred to as the turbo schedule in the
remainder of the paper. While this schedule is justified by
the independence assumptions made in Section 3, there are
many alternatives one can think of. A popular choice is a
flooding schedule mentioned in [10], where every message
is updated at every step of the algorithm. Unfortunately, in
practice this has shown to be too expensive in terms of run-
time for the large graph structure of the SPP task. Instead,
two other choices are to be investigated here:
• Horizontal-dominant schedule (see Fig. 5): complete

horizontal forward-backward runs with short-chain up-
ward and downward runs in-between. A dual Vertical-
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Figure 4: Turbo schedule (numbers indicate order of mes-
sage passing along the graph)
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Figure 5: Horizontal dominant schedule (upward only)

dominant schedule is investigated as well.
• Plane-wave schedule (see Fig. 6): The algorithm starts

at, e.g., the lower left corner node and computes mes-
sages to the right and the upper neighbor node. The
next node is the earliest node that receives messages
but is not completed. This is done recursively until the
upper right corner is reached. Then, the procedure is
applied backwards to reach the lower left node.

6 Experiments
The three schedules introduced in the previous Section
are to be compared here. Additionally, a decoding as-
suming independent and identically distributed observa-
tions (IID) is performed as a baseline result. The TIMIT
database [14] is chosen due to its clean recordings, so that
artificially added noise can be freely controlled and ground
truth speech is available for comparisons.

For the STFT, a frame size of 1024 and a quarter-frame
sized shift are chosen resulting in K=513. A Hamming
window is used for analysis. Artificially generated white
Gaussian noise is added for the simulation. The amount of
additive noise is controlled by the SNR. Binary reference
masks are calculated by determining the time-frequency
slots of the clean input speech signal that account for 95 %
of the cumulative periodogram and setting their mask en-
try to 1. The dependency factors and the a-priori state
probabilities are estimated by counting transitions and oc-
curences in the reference masks on all 3260 utterances con-
tributed by male speakers of the TIMIT training corpus
while evaluation is done on all 1120 male utterances of
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Figure 6: Plane wave schedule

the TIMIT test corpus.
The estimated SPP is compared with the reference

mask to obtain the True Positive Rate (TPR) and False
Positive Rate (FPR) using the method described in [15],
which are utilized to plot a Receiver Operating Character-
istic (ROC).

The ROC is shown in Fig. 7 and Fig. 8 for SNRs of
−5 dB and 0 dB, respectively. As one can see, all sched-
ule types dominate the IID decision for an FPR exceeding
0.05. Furthermore, the turbo schedule exhibits the best re-
sult almost everywhere, with an improvement of approxi-
mately 0.08 in terms of the TPR at the knee point for the
lower SNR. It is interesting to see that the horizontally-
vertically oriented schedules are overall performing better
than the diagonally oriented plane-wave schedule.

As a final note, the differences of the vertical-dominant
schedule (VDom) and the horizontal-dominant schedule
(HDom) are not significant. In [16], it is suggested to use
the direction with the lower variance first — correspond-
ing to the time direction in the SPP task, which is known
to exhibit stronger correlations and thus a lower variance.
Nonetheless, this does not seem to make a difference for
the task at hand.
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Figure 7: ROC for SNR=−5dB
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Figure 8: ROC for SNR=0dB

7 Conclusions
We have presented an Undirected Graphical Model that
utilizes information from time and frequency direction in
the STFT domain to estimate the Speech Presence Prob-
ability. It overcomes the issues of a directed model and
allows high flexibility in terms of scheduling. The exper-
imental results compared different schedule schemes and
provide strong evidence for the utility of the turbo sched-
ule.
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