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Motivation

• Quite a few older papers on CVNNs, 
even on real-valued tasks


• Limited recent contributions with notable exceptions 
(i.e. complex valued weight matrix in RNNs)


• Real-valued NNs are universal approximators anyway


• Rather polarizing, so lets see if we can encourage vivid 
discussions.
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Motivation, Speech Enhancement

• Real-valued data often more accessible in complex 
domain


• SE algorithms often formulated in STFT/ spectral domain

• Beamforming

• Noise reduction/ Wiener filter

• Speech recognition features


• A few networks trained on waveforms
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BACKGROUND
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Im h

Re h

Complex differentiability

• Complex differentiability:


• Example:
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Partial derivatives

• Non-holomorphic functions still partially differentiable

• Choose any rotation of the basis

• One such choice for
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[Wirtinger1927]

x = Re z, y = Im z
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Partial derivatives
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• Finally, each network element 
needs to provide:

( )*

g(a, b)

( )

z

f(z)

z



NTDepartment of Communications

Engineering

Lukas Drude, Complex-valued Networks


Building blocks

• Do we need an extended linear-layer?
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f(z) = Az +Bz⇤ + b
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Building blocks

• Do we need an extended linear-layer?

7

f(z) = Az +Bz⇤ + b

• How to we get a valid non-linearity?

• Bounded and holomorphic = constant.

• Variants: fmt(z) = tanh |z|ej arg z

fst(z) = tanhRe z + j tanh Im z

fsr(z) = max(0,Re z) + jmax(0, Im z)
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Building blocks

• Do we need an extended linear-layer?

7

f(z) = Az +Bz⇤ + b

• Optimizer?

• SGD, Momentum SGD, AdaGrad and NesterovAG 

generalize nicely.

• How to we get a valid non-linearity?

• Bounded and holomorphic = constant.

• Variants: fmt(z) = tanh |z|ej arg z

fst(z) = tanhRe z + j tanh Im z

fsr(z) = max(0,Re z) + jmax(0, Im z)



NTDepartment of Communications

Engineering

Lukas Drude, Complex-valued Networks


EXPERIMENTS
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Signal model and beamforming

• Clean speech from TIMIT, random ATF


• Objective: Maximize signal to noise ratio

• Known analytic solution for spatially white noise:

9

Ytf = HfStf +Ntf

�f =
X

t

YtfY
H
tf , Wf = PCA {�f} , Ztf = WH

f Ytf

Hf
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Signal model and beamforming

• Clean speech from TIMIT, random ATF


• Objective: Maximize signal to noise ratio

• Known analytic solution for spatially white noise:

9

Ytf = HfStf +Ntf

�f =
X

t

YtfY
H
tf , Wf = PCA {�f} , Ztf = WH

f Ytf

Hf

• Analytic solution can now be split into different tasks:

a) Map observations to outer product

b) Map covariance matrix to principal component

c) Map observations to principal component directly
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where z 2 CN and (·)H is the conjugate transpose.
Accordingly, the real-valued implementation is calculated

as follows (corrected by a factor of 2):

l

real
MSE =

1

K
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� t

0
)

H
(z

0
� t

0
) =

1

K

2K
X

n=1

|z
0
k � t

0
k|2, (12)

where z
0
, t

0
2 R2K are the stacked output of the real-

valued neural network and the stacked training target, respec-
tively.

In many tasks related to complex signal processing, the ab-
solute phase as well as the scaling of the result may be less
important than the level differences and the phase differences
between signals. For example a beamforming vector W for a
given frequency, which consists of complex scalars and is used
to constructively compose an enhanced signal from STFTs of
individual microphone signals serves just as well as any com-
plex rotation We

j� of it.
Therefore, we use the negative cosine similarity (NCS) be-

tween complex vectors, where ||z|| =
p
zHz is the vector length

(see appendix for gradients):

l

complex
NCS = � |zHt|

||z|| · ||t|| , l

real
NCS = � |z

0H
t
0
|

||z0 || · ||t0 || . (13)

4. Evaluation
To evaluate CVNNs in comparison to RVNNs, we decided to
use a typical signal processing problem, namely beamforming,
with a known analytic solution. We keep the degrees of free-
dom equal for both network types by setting the number of hid-
den units of the RVNN to be twice as high as for the CVNN.
Stochastic gradient decent with a learning rate of 0.001 and a
momentum of 0.9 was used in all training tasks.

We used 4620 and 1680 utterances from the TIMIT
database [17] for training and cross validation, computed the
STFT representation Stf of clean speech, and multiplied it with
a random complex-valued acoustic transfer function vector Hf

in the sense of the multiplicative transfer function approxima-
tion. Each acoustic transfer function vector contains D = 3

complex random values and corresponds to the random (rever-
berant) transmission paths of the source signal to each of the
D sensors. Additionally, the observations are corrupted with
white noise Ntf with a signal-to-noise ratio (SNR) of 10 dB.
The signal model is therefore:

Ytf = HfStf +Ntf . (14)
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Figure 1: Summarized cross-validation error of 10 differently
initialized networks to calculate the outer product matrix of
TIMIT observations with the mean loss as a continuous line and
the 95% confidence intervals as a shaded area (Task 1).

A classic approach is to use a principal component analysis
(PCA) beamformer [18]. The PCA beamforming vector is ob-
tained by first calculating the observation covariance matrix for
each frequency bin:

�Y Y (f) =

1

T

T
X

t=1

YtfY
H
tf , (15)

calculating the principal component Wf = P {�Y Y (f)} and
finally applying the beamforming vector as a scalar product:

Ztf = WH
f Ytf . (16)

Therefore, as a first task, we train both the real- and the
complex-valued network to calculate the outer product t =

YtfY
H
tf of each observation vector. The loss function is set to

calculate the MSE as given in Equation (12) for the real-valued
and (11) for the complex valued neural network. The estima-
tion for the outer product matrix (15) is treated independently
for each time and frequency which effectively leads to a batch
size of F ·T , where F is the number of frequency bins and T is
the number of time frames. All further network parameters are
summarized under Task 1 in Table 4.

Figure 1 shows the cross validation loss in terms of MSE
(Equations (11), (12)) for the real-valued implementation in
blue and the complex valued implementation in red for ten dif-
ferent initializations of the same network architecture (the factor
2 according to Equation (11) is taken into account). It can be
observed, that the variance between different initializations in-
creases during the observations. We can further note, that the
loss for the real valued implementation is higher than for the
complex valued network. How this affects SNR gains, is inves-
tigated subsequently.

In the second task, we train the two networks to calcu-
late the principal component from the complex valued matrix
�Y Y (f). Since the length of a principal component is arbitrary,
we opted to use the negative cosine similarity as the loss func-
tion (Equation (13)). The other parameters are again listed in
Table 4. It turns out that the difference in cross-validation score
between the complex and real-valued networks is lower. It may
also be observed that the loss is fairly close to the minimum of
�1. Further improvement might be achieved by normalizing
the input to reduce the dynamic range the network has to cover.

In the third task, we stack the previous networks to a deep
architecture with the goal to estimate the beamforming vec-
tor W. The training target is the oracle beamforming vector,
which is obtained by calculating the principal component of the
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Figure 2: Summarized cross-validation error of 10 differently
initialized networks to calculate the PCA vector given the co-
variance matrix of TIMIT observations visualized as in the first
figure (Task 2).

Learn outer product

• Momentum SGD, 
learning rate 0.001


• D = 3 Channels

• White noise with 10 dB SNR

10

NN MSE
Ytf

YtfY
H
tf

loss

RVNN CVNN
2D → 50 D → 25

ReLU SplitReLU
50 → 2D2 25 → D2

MSE MSE
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where z 2 CN and (·)H is the conjugate transpose.
Accordingly, the real-valued implementation is calculated

as follows (corrected by a factor of 2):
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where z
0
, t

0
2 R2K are the stacked output of the real-

valued neural network and the stacked training target, respec-
tively.

In many tasks related to complex signal processing, the ab-
solute phase as well as the scaling of the result may be less
important than the level differences and the phase differences
between signals. For example a beamforming vector W for a
given frequency, which consists of complex scalars and is used
to constructively compose an enhanced signal from STFTs of
individual microphone signals serves just as well as any com-
plex rotation We

j� of it.
Therefore, we use the negative cosine similarity (NCS) be-

tween complex vectors, where ||z|| =
p
zHz is the vector length

(see appendix for gradients):
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4. Evaluation
To evaluate CVNNs in comparison to RVNNs, we decided to
use a typical signal processing problem, namely beamforming,
with a known analytic solution. We keep the degrees of free-
dom equal for both network types by setting the number of hid-
den units of the RVNN to be twice as high as for the CVNN.
Stochastic gradient decent with a learning rate of 0.001 and a
momentum of 0.9 was used in all training tasks.

We used 4620 and 1680 utterances from the TIMIT
database [17] for training and cross validation, computed the
STFT representation Stf of clean speech, and multiplied it with
a random complex-valued acoustic transfer function vector Hf

in the sense of the multiplicative transfer function approxima-
tion. Each acoustic transfer function vector contains D = 3

complex random values and corresponds to the random (rever-
berant) transmission paths of the source signal to each of the
D sensors. Additionally, the observations are corrupted with
white noise Ntf with a signal-to-noise ratio (SNR) of 10 dB.
The signal model is therefore:

Ytf = HfStf +Ntf . (14)
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initialized networks to calculate the outer product matrix of
TIMIT observations with the mean loss as a continuous line and
the 95% confidence intervals as a shaded area (Task 1).

A classic approach is to use a principal component analysis
(PCA) beamformer [18]. The PCA beamforming vector is ob-
tained by first calculating the observation covariance matrix for
each frequency bin:
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calculating the principal component Wf = P {�Y Y (f)} and
finally applying the beamforming vector as a scalar product:

Ztf = WH
f Ytf . (16)

Therefore, as a first task, we train both the real- and the
complex-valued network to calculate the outer product t =

YtfY
H
tf of each observation vector. The loss function is set to

calculate the MSE as given in Equation (12) for the real-valued
and (11) for the complex valued neural network. The estima-
tion for the outer product matrix (15) is treated independently
for each time and frequency which effectively leads to a batch
size of F ·T , where F is the number of frequency bins and T is
the number of time frames. All further network parameters are
summarized under Task 1 in Table 4.

Figure 1 shows the cross validation loss in terms of MSE
(Equations (11), (12)) for the real-valued implementation in
blue and the complex valued implementation in red for ten dif-
ferent initializations of the same network architecture (the factor
2 according to Equation (11) is taken into account). It can be
observed, that the variance between different initializations in-
creases during the observations. We can further note, that the
loss for the real valued implementation is higher than for the
complex valued network. How this affects SNR gains, is inves-
tigated subsequently.

In the second task, we train the two networks to calcu-
late the principal component from the complex valued matrix
�Y Y (f). Since the length of a principal component is arbitrary,
we opted to use the negative cosine similarity as the loss func-
tion (Equation (13)). The other parameters are again listed in
Table 4. It turns out that the difference in cross-validation score
between the complex and real-valued networks is lower. It may
also be observed that the loss is fairly close to the minimum of
�1. Further improvement might be achieved by normalizing
the input to reduce the dynamic range the network has to cover.

In the third task, we stack the previous networks to a deep
architecture with the goal to estimate the beamforming vec-
tor W. The training target is the oracle beamforming vector,
which is obtained by calculating the principal component of the
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Figure 2: Summarized cross-validation error of 10 differently
initialized networks to calculate the PCA vector given the co-
variance matrix of TIMIT observations visualized as in the first
figure (Task 2).
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Task 1: Outer product Task 2: PCA Task 3: Beamformer

RVNN CVNN RVNN CVNN RVNN CVNN

Layer 1 2D ! 50 D ! 25 2D

2 ! 50 D

2 ! 25 2D ! 50 D ! 25

Non-linearity ReLU SplitReLU ReLU SplitReLU ReLU SplitReLU
Layer 2 50 ! 2D

2
25 ! D

2
50 ! 2D 25 ! D 50 ! 2D

2
25 ! D

2

Layer 3 2D

2 ! 50 D

2 ! 25

Non-linearity ReLU SplitReLU
Layer 4 50 ! 2D 25 ! D

Loss function MSE MSE NCS NCS NCS NCS

Table 1: Network configurations for the different tasks and the real and the complex neural network.
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Figure 3: Summarized cross-validation error of 10 differently
initialized networks to calculate the PCA vector given noisy
TIMIT observations visualized as in the first figure (Task 3).

speech-only covariance matrix. Thus, the neural network may
find a better beamforming vector than simply calculating the
principal component of the noisy observation covariance ma-
trix. For the first two layers of the network, each feature vector
is an observation Ytf 2 CD . Therefore, this part of the net-
work operates independently on each time-frequency slot. The
output of the second layer is then summarized along time:

h
0
f =

1

T

T
X

t=1

htf . (17)

To some extend, the first two layers and the summation are ex-
pected to provide information similar to the covariance matrix
output of Task 1. The following two layers then calculate the
principal component similar to Task 2. It turns out that the dif-
ferences between the real and the complex networks are just as
small as during Task 2. To understand how these loss values
translate into SNR gains, Figure 4 evaluates the enhancement
performance when using the estimated beamforming vector and
Equation (16).

In all these experiments the number of real-valued parame-
ters was the same for the RVNN and CVNN, meaning that the
number of complex parameters is half the number of real pa-
rameters. Nevertheless, due to the complex multiplications dur-
ing the forward and backward steps, a CVNN needs more real-
valued multiplications than a RVNN (more elementary opera-
tions in general). The amount of real-valued additions and the
amount of real-valued comparisons (due to the rectified units)
are the same for both networks.
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Figure 4: Boxplot of the median SNR gain for all simulations
performed with a real-valued and a complex-valued neural net-
work (Task 3).

5. Conclusions
From the presented experiments, we conclude that complex val-
ued neural network do not perform dramatically better than real-
valued networks on the considered tasks, which are intrinsically
complex. Still, they require more multiplications. We therefore
conclude that we can rely on real-valued implementations and
use the real and imaginary part of features as inputs, if complex
regression problems are to be solved. Nevertheless, we promote
the negative cosine loss as a means of penalizing errors in rel-
ative phase and level differences, which provides the desired
invariance with respect to an absolute phase and scaling.

6. Appendix
The gradients for the SplitReLU are given by

@fsr

@ Re z

= [Re z > 0],

@fsr

@ Im z

= j[Im z > 0], (18)

rz⇤ = Re

⇢

r⇤
fsr⇤

@fsr

@ Re z

�

+ jRe

⇢

r⇤
fsr⇤

@fsr

@ Im z

�

. (19)

The gradient of the NCS can be composed of atomic com-
putations, where most notably, the gradient of the absolute value
function a(z) = |z| is given as follows:

rz⇤ =

1

2

e

j arg z
(r⇤

a⇤
+ra⇤

) (20)
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5. Conclusions
From the presented experiments, we conclude that complex val-
ued neural network do not perform dramatically better than real-
valued networks on the considered tasks, which are intrinsically
complex. Still, they require more multiplications. We therefore
conclude that we can rely on real-valued implementations and
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regression problems are to be solved. Nevertheless, we promote
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Summary/ Discussion

• Limited benefits in (this) classical feed forward setting, 
use real-valued NNs


• Use complex-valued networks to propagate through…

• …complex valued PCA or other beamformer,

• …feature extraction pipeline.


• Allows to use physically motivated models within deep 
learning framework.

13



NTDepartment of Communications

Engineering

Lukas Drude, Complex-valued Networks


Summary/ Discussion

• Limited benefits in (this) classical feed forward setting, 
use real-valued NNs


• Use complex-valued networks to propagate through…

• …complex valued PCA or other beamformer,

• …feature extraction pipeline.


• Allows to use physically motivated models within deep 
learning framework.

13

Thank you for listening!


