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MOTIVATION
Multi channel processing with neural networks
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Motivation

• Single-channel:

• Neural networks rendered many feature enhancement 

techniques superfluous

• Multi-channel:


• Stack channels (features)

• Work on raw waveforms


• Our approach: Combine neural network with a traditional 
beamformer
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ACOUSTIC BEAMFORMING
GEV & MVDR
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Acoustic beamforming

• MVDR

• Minimize noise

• Source distortionless


• GEV 
• Maximize SNR

• Introduces distortions

argmin
F

FH�NNF s.t. FHd = 1. argmax

F

FH�XXF

FH�NNF
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d = P {�XX}
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Acoustic beamforming

• Both beamformers depend only on signal statistics

• Cross-Power Spectral Density of speech and noise

• Independent of microphone array

• No assumption on acoustic transfer function


• We estimate PSD matrices using masks 
 
 

• This allows us to incorporate a neural network

�⌫⌫ =
1

T

TX

t=1

M⌫(t)Y(t)Y(t)H where ⌫ 2 {X,N}
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SYSTEM OVERVIEW
Neural mask estimation
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System overview
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SETUP
Network configurations and experimental setup
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Network configurations

Layer Units Type Non-linearity dropout
1 256 BLSTM Tanh 0.5
2 513 FF ReLU 0.5
3 513 FF ReLU 0.5
4 513/1026 FF Sigmoid 0.0

Layer Units Type Non-linearity dropout
1 513 FF ReLU 0.5
2 513/1026 FF Sigmoid 0.0
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Experimental setup

• CHiME III challenge

• 6 channels

• 4 different real-world background noise types


• Metrics

• PESQ / WER


• Compared to

• Parametric source separation approaches [Tran10] & [Ito13]

• BeamformIt! (only ASR)

12

Jahn Heymann - Neural Network based Spectral Mask Estimation for Acoustic Beamforming

. N. Ito, S. Araki, and T. Nakatani, “Permutation-free convolutive blind source separation via full-band clustering based on frequency-
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RESULTS
MVDR vs. GEV, Speech Enhancement, Speech Recognition
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Results

• GEV works better with our masks as it avoids the matrix 
inversion
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Results
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Results

WER on evaluation real
clean noise-aware

Baseline 40.17
BLSTM 22.28 15.42

FF 21.93 17.85
BeamformIt! 22.65

Ito13 27.32
Tran10 22.70

BeamformIt!* 12.79
BLSTM* - 7.45
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CONCLUSIONS
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Conclusion

• Beamformer supported by Neural Network

• Significant performance gains

• Independent of microphone array configuration

• Small & simple network possible

• Robust against mismatch conditions

Code available:

https://github.com/fgnt/nn-gev
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https://github.com/fgnt/nn-gev

