

Department of Communications _____

Jahn Heymann Lukas Drude Reinhold Haeb-Umbach

Multi channel processing with neural networks MOTIVATION

- Single-channel:
 - Neural networks rendered many feature enhancement techniques superfluous
- Multi-channel:
 - Stack channels (features)
 - Work on raw waveforms

 Our approach: Combine neural network with a traditional beamformer

GEV & MVDR ACOUSTIC BEAMFORMING

5

Acoustic beamforming

• MVDR

- Minimize noise
- Source distortionless

• GEV

- Maximize SNR
- Introduces distortions

 $\underset{\mathbf{F}}{\operatorname{argmin}} \mathbf{F}^{\mathrm{H}} \boldsymbol{\Phi}_{\mathbf{NN}} \mathbf{F} \quad \text{s.t. } \mathbf{F}^{\mathrm{H}} \mathbf{d} = 1.$

$$d = \mathcal{P} \{ \Phi_{\mathbf{X}\mathbf{X}} \}$$

$$\mathbf{F}_{\mathrm{MVDR}} = \frac{\boldsymbol{\Phi}_{\mathbf{NN}}^{-1} \mathcal{P}\left\{\boldsymbol{\Phi}_{\mathbf{XX}}\right\}}{\mathbf{P}\left\{\boldsymbol{\Phi}_{\mathbf{XX}}\right\}^{\mathrm{H}} \boldsymbol{\Phi}_{\mathbf{NN}}^{-1} \mathcal{P}\left\{\boldsymbol{\Phi}_{\mathbf{XX}}\right\}}$$

 $\underset{\mathbf{F}}{\operatorname{argmax}} \frac{\mathbf{F}^{\mathrm{H}} \boldsymbol{\Phi}_{\mathbf{X}\mathbf{X}} \mathbf{F}}{\mathbf{F}^{\mathrm{H}} \boldsymbol{\Phi}_{\mathbf{N}\mathbf{N}} \mathbf{F}}$

 $\Phi_{\mathbf{X}\mathbf{X}}\mathbf{F} = \lambda \Phi_{\mathbf{N}\mathbf{N}}\mathbf{F}$

6

- Both beamformers depend only on signal statistics
 - Cross-Power Spectral Density of speech and noise
 - Independent of microphone array
 - No assumption on acoustic transfer function
- We estimate PSD matrices using masks

$$\boldsymbol{\Phi}_{\nu\nu} = \frac{1}{T} \sum_{t=1}^{T} M_{\nu}(t) \mathbf{Y}(t) \mathbf{Y}(t)^{\mathrm{H}} \quad \text{where} \quad \nu \in \{X, N\}$$

• This allows us to incorporate a neural network

Neural mask estimation

SYSTEM OVERVIEW

System overview

8

noise-aware

9

Network configurations and experimental setup

SETUP

Network configurations

11

BLSTM

ed	Layer	Units	Туре	Non-linearity	dropout
phisticate	1	256	BLSTM	Tanh	0.5
stic	2	513	FF	ReLU	0.5
ihc	3	513	FF	ReLU	0.5
Sol	4	513/1026	FF	Sigmoid	0.0

FF

Simple Non-linearity Units dropout Layer Туре 0.5 513 FF ReLU 1 2 513/1026 FF Sigmoid 0.0

- CHiME III challenge
 - 6 channels
 - 4 different real-world background noise types
- Metrics
 - PESQ / WER
- Compared to
 - Parametric source separation approaches [Tran10] & [Ito13]
 - BeamformIt! (only ASR)

N. Ito, S. Araki, and T. Nakatani, "Permutation-free convolutive blind source separation via full-band clustering based on frequencyindependent source presence priors," *ICASSP*, 2013

D.H.TranVu and R.Haeb-Umbach, "Blind speech separation employing directional statistics in an expectation maximization framework," *ICASSP*, 2010

MVDR vs. GEV, Speech Enhancement, Speech Recognition **RESULTS**

Results

Department of Communications NT Engineering

• GEV works better with our masks as it avoids the matrix inversion

Results

15

16

17

Results

Results

Department of Communications <u>NT</u> Engineering

18

WER on evaluation real		
clean	noise-aware	
40.17		
22.28	15.42	
21.93	17.85	
22.65		
27.32		
22.70		
	clean 40. 22.28 21.93 22 27	

BeamformIt!*	12	.79
BLSTM*	-	7.45

*new Baseline with DNN AM

CONCLUSIONS

- Beamformer supported by Neural Network
- Significant performance gains
- Independent of microphone array configuration
- Small & simple network possible
- Robust against mismatch conditions

