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Abstract. In this paper we demonstrate an algorithm to learn words
from speech using non-parametric Bayesian hierarchical models in an
unsupervised setting. We exploit the assumption of a hierarchical struc-
ture of speech, namely the formation of spoken words as a sequence of
phonemes. We employ the Nested Hierarchical Pitman-Yor Language
Model, which allows an a priori unknown and possibly unlimited num-
ber of words. We assume the n-gram probabilities of words, the m-gram
probabilities of phoneme sequences in words and the phoneme sequences
of the words themselves as latent variables to be learned. We evaluate the
algorithm on a cross language task using an existing speech recognizer
trained on English speech to decode speech in the Xitsonga language
supplied for the 2015 ZeroSpeech challenge. We apply the learning al-
gorithm on the resulting phoneme graphs and achieve the highest token
precision and F score compared to present systems.

1 Introduction

Automatic speech recognition (ASR) systems mostly rely on supervised learning,
with an acoustic model and a language model, trained from transcribed speech
and text data. Both, the inventory of words and phonemes are known, and a
lexicon with word pronunciations in terms of phoneme sequences is given.

Here we consider a setting, where neither the pronunciation lexicon nor the
vocabulary are known in advance, since the acoustic training data come with-
out labels. In general, the phoneme inventory is not know either, however here
we use the acoustic models of another language to decode the acoustic data,
demonstrating the effectiveness of cross language transfer.

As depicted in Figure 1 an audio recording is typically represented as a time
series of feature vectors. A symbolic representation can be learned by discover-
ing repeated sequences of vectors and assigning the same labels to similar se-
quences, corresponding to phone-like units [1,19,17,13]. On this label sequence
again similar sequences are discovered and given labels from another label set,
thus arriving at a segmentation into words [18,8,4,5,7]. An n-gram language
model is learned simultaneously and used to calculate the probabilities of words,
depending on their n — 1 preceding words.

Figure 2 depicts the generative model: a language Model G and the lexicon
are generated from a prior process, the Nested Hierarchical Pitman-Yor process.
Within the nested process, a word language model is drawn from a Hierarchical
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Fig. 1. Hierarchical model of Speech, Fig.2. Language Model G, words W,
phonemes and words. phonemes Y and feature vectors X.

Pitman-Yor process, whose base distribution is a distribution over all possible
phoneme sequences, calculated by a phoneme language model. Phoneme Se-
quences not corresponding to a word in the lexicon, and therefore new words,
are obtained as draws from the same phoneme language model whose prior is
again a Hierarchical Pitman-Yor process with a uniform base distribution over
phonemes. The words W are generated (drawn) using the language model and
mapped to phoneme sequences Y using the lexicon. Acoustic feature vectors X
are finally generated employing an acoustic model.

Here we will focus on the discovery of words from phoneme sequences, where
the phoneme sequences have been generated by a phoneme recognizer, trained
with another language, assuming a phoneme set and acoustic models for each of
the phonemes to be known.

2 Unsupervised Word Segmentation

If neither the pronunciation lexicon nor the language model are known, and we
are left with the task to segment a phoneme string into the most probable word
sequence, we have to learn the language model together with the words. We use
the Nested Hierarchical Pitman-Yor Language Model (NHPYLM), denoted by
G, which is a Bayesian language model and allows new, previously unseen words,
to evolve and assign probabilities to them. It is based on the Pitman-Yor process
prior, which produces power-law distributions that resemble the statistics found
in natural languages [14,15, 7].

An n-gram language model G, is a categorical distribution over the N words
of the vocabulary, conditioned on the n—1 preceding words u = w;_1, ... Wi—p41:
Gu = {P(w'|u),..., P(w¥|u)}. In a Hierarchical Pitman-Yor process, Gy is
modeled as a draw

Gu ~ PY(d|u|,9|u‘,Gw(u)) (1)

from a Pitman-Yor process with base measure Gr(y), strength parameter dy
and discount parameter ), [15]. The base measure corresponds to the expected
probability distribution of the draws and is set to the language model Gy of
the parent (n—1)-gram. This process is repeated until the parent language model
is a zerogram, which in the supervised case means that all words have the same
probability, given by one over the number of words. Since in the unsupervised
setting the vocabulary size is not known in advance, the zerogram cannot be



specified. It is therefore replaced by the likelihood for the word being a phoneme
sequence, calculated by a Hierarchical Pitman-Yor Language Model (HPYLM)
of phonemes H' where a hierarchy of phoneme language models is built up to
some order m, similar to (1). The phoneme zerogram is finally set to a uniform
distribution over the phoneme set. The resulting structure is the NHPYLM,
which consists of a HPYLM for words and a HPYLM for phonemes.

Since we now have to learn the NHPYLM along with the words and the
phoneme sequence, the maximization problem becomes:

(W,G,Y) = argmax P(W, G, Y|X)
W,G.Y

=argmax P(W,Y|X  G)P(G) (2)
W,G,Y

The Nested Hierarchical Pitman-Yor process prior P(G) over the language model
is introduced. Instead of having one particular language model, we have to find
that pair of language model, word sequence and phoneme sequence which max-
imizes the joint probability.

The maximization is carried out by Gibbs sampling, first jointly sampling a
word and phoneme sequence from P(W,Y|X, G) [8], by keeping G constant in
(2) and then sampling the NHPYLM from P(G|W) [7] in an alternating and
iterative fashion for each utterance. To avoid the recomputation of the acous-
tic model scores with every iteration, we use a speech recognizer to produce a
phoneme lattice, containing the most likely phoneme sequences.

Joint sampling of the word and phoneme sequence can be very costly. To
reduce the computational demand, the phoneme sequence is first sampled from
the speech input according to P(Y|X,H) and then a word sequence from that
phoneme sequence according to P(W|Y, G) [5, 4]. For the sampling of the pho-
neme sequence, an additional phoneme HPYLM H, which includes the word
end symbol, is employed. To incorporate knowledge of the learned words, the
phoneme HPYLM is sampled from P(H|W) using the sampled word sequence
and their corresponding word sequence.

3 Experiments

We evaluate the segmentation algorithm on datasets provided for the 2015 Ze-
roSpeech challenge [16]. The datasets consist of an English dataset containing
conversational speech from the Buckeye corpus [10] and a second dataset con-
taining prompted speech in Xitsonga, a south African Bantu language, from the
NCHLT Xitsonga corpus [2]. Our goal is to demonstrate the possibility of using
existing acoustic models from another language to perform the word segmen-
tation, we use acoustic models trained on prompted English speech for both
datasets. The English dataset is used to demonstrate the segmentation perfor-
mance when using acoustic models of the same language. The Xitsonga corpus
serves as the low resource language for which we assume to only have audio data
available but no transcriptions.



We use the tools provided for the 2015 ZeroSpeech challenge for the evalua-
tion and to be able to compare our results to previous publications. We focus on
the type and token scores. The type scores are a measure for the quality of the
discovered lexicon and therefore the set of discovered words. The token scores
are a measure for the quality of the discovered word tokens and therefore the
transcription of the speech, also called parsing quality. A detailed description of
the evaluation framework and evaluation measures can be found in [16].

3.1 Setup

For the acoustic model we use a p-norm DNN-HMM triphone speech recognizer
[20] trained on English speech from the WSJ0+1 corpus [9]. We build the rec-
ognizer using the nnet2 p-norm recipe for WSJ provided with the Kaldi [11]
speech recognition toolkit. The recipe was modified to enable phoneme recogni-
tion without a word lexicon by building a simple lexicon, mapping each triphone
to its middle phoneme.

The recognizer uses LDA transformed 13 dimensional MFCC feature vectors
extracted with a frame rate of 10ms and a context of +3 frames at a target
dimensionality of 40. FMLLR speaker adaptation of the LDA transformation is
performed by a two pass decoding scheme where we assume the speaker 1D to
be known.

The recognizer is used to create phoneme lattices for both datasets which
are processed by the segmentation algorithm. We varied the word- and charac-
ter language model order in the segmentation algorithm from 1 to 2 (WLM) and
1 to 8 (CLM) to evaluate the performance with different model complexities.
Gibbs sampling is performed until iteration 150 to generate the segmentation
of a sentence and to update the language model. From iteration 151 Viterbi
decoding is performed to generate a segmentation. From iteration 176 the fall-
back probability to the character model is set to zero to disable the discovery of
new words and clean up the language model by removing infrequently, especially
uniquely, discovered words. The thresholds were chosen so that in each step the
algorithm converged.

3.2 Results

Evaluating the performance of the segmentation algorithm on the Xitsonga
dataset delivers insight into its usefulness for low resource language process-
ing. We treat the Xitsonga language as a low resource language by assuming
that only audio data is available but no transcriptions. We also assume that no
acoustic model is available and instead use the English acoustic model to create
phoneme graphs for the segmentation algorithm. This concept is also called cross
language transfer, where knowledge from one language is transfered to another.

Figure 3 shows the type F scores for different language model orders and
decoding settings. It can be seen that the performance increases with increasing
character language model order. The overall scores are fairly low though. This is



mainly due to the mismatch in acoustic models and the resulting errors and nois-
iness of the phoneme latices. Viterbi decoding delivers a little lower performance
although for higher character language model orders it matches the performance
with Gibbs sampling. This might partly be due to the noisy characteristics of
the input phoneme Lattices. Viterbi decoding is supposed to find the result with
the highest probability. Due to the noise this might not be the optimal result.
While Gibbs sampling delivers samples from the distribution of segmentations
and language models seems to result in better performance. Deactivating the
character language model deteriorates the results. Most likely the input data is
too noisy resulting in many infrequent words which are being removed in this
case. Increasing the word language model order from one to two also does not
change the results significantly. The scores are a little higher for the lower order
character language models but almost the same for the higher order language
models. It seems that word context improves the performance for lower order
character language models and noisy input but not for more complex models,
contrary to previous results on less noisy data [5].

Figure 4 shows the token F scores. The behavior is similar to the type F score.
The result deteriorates with Viterbi decoding and deactivating the character
language model. Increasing the word language model order from one to two
results in marginally better results. The biggest issue in this low resource setup
seems to be the noisy input data making it difficult to learn appropriate models
at higher word language model orders.
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Fig. 3. Type F-score with varying word- and character language model order for Xit-
songa dataset. Iter.: 150 (Gibbs), 175 (Viterbi), 200 (No character model fallback)
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Fig. 4. Token F-score with varying word- and character language model order for
Xitsonga dataset. Iter.: 150 (Gibbs), 175 (Viterbi), 200 (No character model fallback)

3.3 Comparison with previous results

In the 2015 ZeroSpeech challenge two types of systems participated. The two sys-
tems can be classified into segmentation systems that segment, cluster and label
the complete utterance. Our system also falls into this category. On the other
hand Spoken Term Discovery (STD) based systems discover similar segments
and only clusters and labels those, leaving segments not discovered as similar to
others unlabeled. In Table 1 we compare our results to the two types of systems.
For the challenge only two systems were submitted [3] and we compare to the
best setups of each.

Osc. Seg. is based on a simple segmentation algorithm finding minima in a
particular oscillation frequency of the speech similar to the theta-rhythm brain
oscillations and segment according to those. Fixed length representations of the
Discovered segments are then clustered, labeled and n-grams of those clusters,
sorted in ascending order from longest to shortest, labeled as words [12].

STD is a system based on finding similar segments, building a graph with
edges connecting those similar segments with weights proportional to their sim-
ilarity and clustering them using graph clustering algorithms [6].

For our system we compare the best setups with word language model order
one and highest type F score (NHPYLM 1) and word language model oder
two and highest token F score (NHPYLM 2) to the other systems. The system
performs best in both settings on the English dataset, since we are using English
acoustic models. On the Xitsonga dataset our system performs best on the token
precision and F score and second best in all three token performance measures.



It also performs better then the Osc. Seg. system. For the type performance our
system performs second best in all measures after the STD system. Since our
system is a segmentation system it performs better on the token measures while
the STD system is able to discover a better lexicon but not label all segments,
resulting in higher type measures on the Xitsonga dataset.

Since we are using English acoustic models, the comparison on the English
is to be understood as a baseline in case of known and partly matching models.

Table 1. Precision (P), Recall (R), F-score (F) for Type and Token on English and
Xitsonga dataset with different algorithms. Red: best score, blue: second best score.

English Xitsonga

Type Token Type Token
System P R F P R F P R F P R F

Osc. Seg. 14.112.913.522.6 6.1 9.6 2.2 6.2 3.32.3 3.4 2.7
STD 3.1 92 46 24 35 2.8 4918.87.82.212.60.8
NHPYLM 1 18.1 38.7 24.6 28.8 19.0 22.93.9 82 5.3 4 2.7 3.2
NHPYLM 2 17.8 36.7 24.0 24.5 25.5 25.0 3.7 8.5 5.1 4.1 3.4 3.7

4 Conclusion

Our system demonstrated a higher performance over a comparable segmentation
system while still suffering from noisy input data. Although we achieved better
performance than the STD system on the tokes, type quality is still behind STD
systems. It is still an open question how to deal with noisy input data. Future
research will investigate the integration of the acoustic model into the learning
process and how to extend the system to deal with errors in the phoneme lattices
and pronunciation variants.
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