

Noise-Presence-Probability-Based Noise PSD Estimation by Using DNNs

12. ITG Fachtagung Sprachkommunikation

Aleksej Chinaev, Jahn Heymann, Lukas Drude, Reinhold Haeb-Umbach

Department of Communications Engineering Paderborn University

5. Oktober 2016

- 1 Problem formulation and motivation
- 2 Causal DNN-based noise PSD estimator
- 3 Experimental evaluation
- 4 Conclusions and outlook

Noise PSD estimation in spectral speech enhancement

• Clean speech s(t) contaminated by an additive noise d(t) resulting in

- Noise power spectral density (PSD) $\lambda_D(k,\ell) = E\left[\left|D(k,\ell)\right|^2\right]$ is used in a priori SNR estimation and calculation of gain function $G(k,\ell)$
- From $|Y(k,\ell)|^2$ in presence of **non-stationary** noise challenging task

Use a Deep Neural Network (DNN) for noise PSD estimation! But how?

Techniques of 10 state-of-the-art noise PSD trackers

		techniques				
	All estimators are causal!	1. SPP estimation	2. Minimum search	3. Bias compensation	4. Bayesian inference	5. Output smoothing
noise PSD trackers	1. SPP-based (Hirsch-93, Gerkmann-12)	✓				✓
	2. MS-based (Martin-01, Chinaev-15)		\checkmark	\checkmark		
	3. MCRA-based (Cohen-02, Fan-07, Kum-09)	✓	\checkmark			\checkmark
	4. IMCRA (Cohen-03)	✓	\checkmark	\checkmark		\checkmark
	5. MMSE-SPP (Yu-09)	✓			\checkmark	\checkmark
se	6. MMSE-BM (Hendriks-10)		\checkmark	\checkmark	\checkmark	\checkmark
no	proposed DNN-based	√	•			√

- 1 Problem formulation and motivation
- 2 Causal DNN-based noise PSD estimator
- 3 Experimental evaluation
- 4 Conclusions and outlook

LSTM network for causal estimation of noise spectral mask

• DNN task: estimate a <u>soft</u> noise spectral mask $M_D(k,\ell)$ from $|Y(k,\ell)|$ by targeting an ideal binary mask (IBM) for noise

$$\mathrm{IBM}_D(k,\ell) = egin{cases} 1, & |D(k,\ell)| > 10 \cdot |S(k,\ell)| \ 0, & \mathsf{else}. \end{cases}$$

Table: Network configuration for STFT window length of 1024

Layer	Units	Туре	Non-Linearity	$p_{ m dropout}$
L1	512	LSTM	Tanh	0.5
L2	1024	FF	ELU	0.5
L3	1024	FF	ELU	0.5
L4	513	FF	Sigmoid	0.0

- Causality: estimation of $M_D(k,\ell)$ based only on data of previous frames
 - ▶ $M_D(k, \ell) \in [0, 1]$ is soft \rightarrow noise-only presence probability estimation

Example of noise-only presence probability (NPP) estimation

ullet DNN provides smoothed however structured noise spectral mask $M_{
m D}(k,\ell)$

Output smoothing using DNN-based noise spectral mask

Noisy spectrogram

DNN-based noise spectral mask

• Low-complexity NPP-based noise PSD estimator with Output smoothing

$$\hat{\lambda}_D(k,\ell) = \left[1 - M_D(k,\ell)\right] \cdot \hat{\lambda}_D(k,\ell-1) + M_D(k,\ell) \cdot |Y(k,\ell)|^2$$

controlled by a <u>soft</u> noise spectral mask $M_D(k,\ell) \in [0, 1]$

- ► Speech presence $M_D(k,\ell) = 0$: $\hat{\lambda}_D(k,\ell) = \hat{\lambda}_D(k,\ell-1)$ \Rightarrow hold
- Noise only $M_D(k,\ell) = 1$: $\hat{\lambda}_D(k,\ell) = |Y(k,\ell)|^2 \Rightarrow \text{update}$

- 1 Problem formulation and motivation
- 2 Causal DNN-based noise PSD estimator
- 3 Experimental evaluation
- 4 Conclusions and outlook

Performance measures and experimental setup

Evaluation of noise PSD estimation

- Noise PSD reference: periodogram $|D(k,\ell)|^2$
- Measures: log-error mean (LEM) and log-error variance (LEV)

Impact on enhanced signal

- Mean opinion score listening quality objective (MOS-LQO)
- Output global signal-to-noise ratio SNR_{out}

Development data of CHiME-3 database (5th microfone)

- 4 highly non-stationary noisy environments (bus, cafe, ped, str)
- $\sim 3\,h$ of speech with averaged $\text{MOS-LQO}_{in} = 1.29$ and $\text{SNR}_{in} \sim 5.6\,\text{dB}$
- 25% for parameter optimization of 10 used noise PSD trackers
- \bullet 75% for comparison with the proposed DNN-based approach

Experimental results on CHiME-3 challenge

• 10 state-of-the-art noise trackers for recommended (rec) parameters

- Optimized (opt) parameter over all performance measures scaled on [0, 1]
 - ▶ Improvement of $\sim 10\%$ in LEM and $\sim 24\%$ in SNR_{out}
 - \blacktriangleright Length of the window for $\textit{Minimum search} \sim 0.25 s$ compared to [0.6, 1.1]s
- DNN-based approach clearly outperforms all state-of-the-art noise trackers

- 1 Problem formulation and motivation
- 2 Causal DNN-based noise PSD estimator
- 3 Experimental evaluation
- 4 Conclusions and outlook

Conclusions and outlook

Conclusions

- 10 state-of-the-art noise PSD trackers are categorized and optimized
- DNN-based causal noise-only presence probability estimator proposed
- In nonstationary noise compared to considered noise PSD trackers
 - Reduced estimation error and estimator's variance
 - Better trade-off between speech quality and noise reduction

Outlook

 Applying DNN for speech presence probability estimation used in gain functions with speech presence uncertainty

Thank you for your attention!

Questions?

Paderborn University

Department of

Communications Engineering

Web: nt.upb.de

