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Abstract

A noise power spectral density (PSD) estimation is an in-
dispensable component of speech spectral enhancement
systems. In this paper we present a noise PSD tracking al-
gorithm, which employs a noise presence probability esti-
mate delivered by a deep neural network (DNN). The algo-
rithm provides a causal noise PSD estimate and can thus be
used in speech enhancement systems for communication
purposes. An extensive performance comparison has been
carried out with ten causal state-of-the-art noise tracking
algorithms taken from the literature and categorized acc.
to applied techniques. The experiments showed that the
proposed DNN-based noise PSD tracker outperforms all
competing methods with respect to all tested performance
measures, which include the noise tracking performance
and the performance of a speech enhancement system em-
ploying the noise tracking component.

1 Introduction

Noise power spectral density estimation is an essential
component of any single-channel speech enhancement sys-
tem using spectral subtractive or statistical-model-based
algorithms [1]. The challenging task of noise PSD esti-
mation in the presence of non-stationary noise has spurred
the development of many sophisticated algorithms during
the last years. A closer look into their functionality shows
that they can be categorized along the following lines:

e Because of the sparseness of the clean speech PSD
some noise trackers make use of a minimum search of
the noisy PSD over a certain number of the previous
frames, which are closely related to the desired noise
PSD estimate [2-8].

e Other approaches employ a voice activity detection
(VAD) or a speech presence probability (SPP) estima-
tion, again exploiting the sparseness of speech, to find
the noise-only time-frequency slots where the noise
PSD estimate can be updated [3-6, 9-11].

e Due to the random nature of the signals, they are of-
ten modeled as realizations of random processes with
given probability density function (PDF) enabling e.g.
an analytical bias compensation of the noise PSD esti-
mates [2, 4, 7, 8].

e Furthermore, the statistical modeling facilitates a

Bayesian inference such as the minimum mean squared
error (MMSE) estimators for noise PSD [7, 10].

e Since the short-time Fourier transform (STFT) coef-
ficients of the noise signals are correlated in a cer-
tain neighbourhood (even for white noise), an output
smoothing' becomes another very popular technique in
the noise tracking [3-7, 9-11].

'In noise PSD tracking at least 3 types of smoothing can be distin-
guished: a smoothing for the minimum search, a smoothing as part of the
SPP estimation, and a smoothing of PSD of a noisy signal resulting in
estimates of a noise PSD tracker denoted here as the output smoothing.

A mandatory property of all approaches for noise PSD
estimation, when used in communication scenarios, is its
causality.

In recent years deep neural networks have made in-
roads in speech signal processing, and DNN-based ap-
proaches for speech enhancement have been developed
[12]. The networks operate here usually as nonlinear fil-
ters mapping the noisy speech to clean speech as in [13].
Sometimes DNNs are combined with conventional speech
enhancement techniques [14]. Recently, we effectively in-
corporated a DNN-based spectral mask estimation into a
multi-channel speech enhancement system [15].

In this contribution we suggest to use a single-channel
DNN-based noise presence probability (NPP) estimation
for noise PSD tracking. To this extent we modify our mask
estimation system of [15] to be causal and work on a sin-
gle frame of a single-channel input signal. This asks for a
replacement of the commonly used batch normalization of
the input and/or hidden layers of the network with methods
that do not compromise the latency of the system [16].

The remainder of this paper is structured as follows: In
Section 2 we introduce mathematical notations and derive
an NPP-based noise PSD estimator. Next, a causal DNN-
based NPP estimation is introduced in Section 3. Further,
in Section 4 we give an overview of ten state-of-the-art
noise PSD estimators used in our experimental evaluation,
and, after presentation of experimental results in Section 5,
we draw some conclusions in Section 6.

2 NPP-based noise PSD estimation

We denote the periodogram of the noisy speech signal
by |Y(k,£)|* and of the noise signal by |D(k,¢)|* with
a frequency bin index k € {1,---, K} and a frame index
£e€{1,---,L}. The noise PSD is then defined as

Ao (k,0) = E [|D(k. O M

where E[-] denotes the mathematical expectation operator.
The main task of any noise PSD tracker is to estimate the
noise PSD Ap(k,¢) from the noisy PSD |Y (k,/)|> in a
causal way, i.e., by using only past observations up to a
current frame.

Assuming that a noise spectral mask Mp (k, ¢) is given,
and inspired by simplicity of the SPP-based noise PSD es-
timator proposed in [11] and summarized in [17], we pro-
pose a low-complexity NPP-based estimator using a recur-
sive averaging

Ap(f) = (1= Mp(£))-Ap(¢—1)+Mp(€) - [Y (0)]*. (2)

Since Eq. (2) is carried out for every frequency bin sepa-
rately, we dropped the frequency index k here. Note, that
the noise spectral mask Mp(¢) in Eq. (2) plays the role
of a time-varying smoothing parameter. Eq. (2) is similar
to what is done in [11], where a speech presence prob-
ability estimate, so to say the complement to Mp(¢), is



used instead. But unlike [11, 17], \p (¢) will not be further
smoothed, as it will turn out that the NPP estimate deliv-
ered by a DNN is already very robust. This corresponds to
the parameter choice apow = 0in [11] or 8 =0in [17].

The proposed noise PSD estimator uses the sparseness
property of speech and applies a technique similar to SPP
estimation. However we denoted our estimator as a NPP-
based approach (and not as a SPP-based), since we make
a distinction between NPP and speech absence probability
(similar to [1], chapter 44.7.1).

3 Causal NPP estimation using DNN

As outlined in the previous section our proposed noise PSD
estimator relies on a spectral mask Mp(k,¢) which indi-
cates the probability of the presence of noise in the k-th
frequency bin of frame number /. We propose to use a
neural network to estimate this spectral mask.

In our previous work on a related task [15], we
achieved the best results with a bi-directional Long
Short-Term Memory network. However, this would
limit our approach presented here to batch-processing
as the whole utterance must be available to estimate
the mask. To avoid this limitation and make the sys-
tem causal, we omit the backward path (i.e. use a
Long Short-Term Memory (LSTM) network) and double
the number of units in this layer to allow the network to
compensate for the missing backward units. Note, that due
to the nature of LSTMs we are still able to exploit temporal
dependencies through its internal state which is passed on
to the next frame.

The scenario also prohibits us to wuse batch-
normalization like in our previous works where we es-
timate the statistics over a whole utterance, even at test
time. Instead, we normalize the input data using the statis-
tics from the training data. Additionally we replace the
Rectified Linear Unit (ReLU) activation function with the
Exponential Linear Unit (ELU) activation function which
has an effect similar to batch-normalization during training
[18]. The resulting configuration of our LSTM network for
the STFT window length of 1024 is summarized in Table 1.

The network input is a single frame of the magnitude
spectrum from the noisy signal |Y'(k,£)|. It then tries to
estimate the NPP for every bin of this frame. To learn this
relationship, we use ideal binary masks of noise as training
targets which we calculate as

‘S(kvé)‘ thp
IBM p (I, €) = {(1) D) <10 3)

where S(k,{) are STFT coefficients of the clean speech
signal. In this work, we empirically set the threshold thp
to —1. Thus we classify a time-frequency bin as noise-
only, if it is significantly dominated by the noise signal. By
doing so we preserve the time-frequency bins with weak
energy of clean speech signal to be assigned to the noise
signal. Using such binary masks during training leads to
a conservative NPP estimate and a sparser mask with high
contrasts as output.

Here, frequency bins with indices below 5 and above
500 (corresponding to frequencies below ~ 78Hz and
above ~ 7.8kHz for a sample rate of 16kHz) are always
considered to contain noise. Further it should be men-
tioned, that while the training targets are either zero or one,
the network output is continuous between zero and one.

Table 1: LSTM network configuration for NPP estimation

Layer Units Type Non-Linearity  pdropout
L1 512 LSTM Tanh 0.5
L2 1024 FF ELU 0.5
L3 1024 FF ELU 0.5
L4 513 FF Sigmoid 0.0

The targets IBMp(k,£) from Eq. (3) are compared to
the current output of the network Mp(k,£) using a binary
cross-entropy (BCE) cost

11 L K

BCE=——— IBMp (k,£) -log, Mp (k, ¢
KL;};{ p(k, L) logy Mp( )(4)

+ (1—=1IBMp(k,£)) -log, (1 — Mp(k,£))}.

We initialize the weights of all layers using a uniform
distribution, i.e. W ~ % [—a,a]. For the LSTM layer, the
parameter a is 0.04, while for the ELU layers and the last
layera = NG /v/Tin + Nout, Where nj, and noy are the input
and output size of each layer, respectively [19]. The biases
are all initialized with zeros.

4 State-of-the-art noise PSD trackers

A very popular noise PSD tracker is the minimum statistics
(MS) approach [2], whose first draft was published in [20].
As it is depicted in Table 2, the MS method implements
a minimum search with previous averaging of the noisy
PSD over time with a time-variant optimal smoothing con-
stant and an elaborated bias compensation. Recently we
proposed to use an alternative control function for calcu-
lation of the optimal smoothing constant resulting in the
Bayesian-smoothed MS (BSMS) approach [8].

Another noise PSD estimator, presented in [9] and de-
noted further as a VAD recursive averaging (VAD-RA), ap-
plies an output smoothing of the noisy PSD controlled by
a rough VAD estimation which indicates speech presence.
Compared to [2] the noise PSD estimates of the VAD-RA
approach is more smoothed. The same techniques are used
by a SPP-based approach with fixed priors (SPP-FP) re-
cently published in [11], where the authors propose to re-
place the hard decision of the VAD by a soft SPP estima-
tion resulting in an unbiased MMSE-like estimator.

Minimum search

Bias compensation
Bayesian inference
Output smoothing

VAD/SPP estimation

\

MS-based [2, 8]
VAD/SPP-based [9, 11]
MCRA-based [3, 5, 6]

IMCRA [4]
MMSE-VAD [10]
MMSE-BM [7] v v

SN
SENENEN
\
SENENENEN

v
v

Table 2: An overview of the techniques used in the ten
state-of-the-art noise PSD estimators.



In contrast to [11], the output smoothing of the min-
ima controlled recursive averaging (MCRA) algorithm is
controlled by a SPP estimation, which is based on a pre-
vious minimum search technique [3]. Note, the MCRA
approach employs all 3 types smoothing operations men-
tioned in Section 1. The MCRA method served as a corner
stone for the development of a series of further noise PSD
trackers. One of them, the enhanced MCRA (EMCRA) ap-
proach [5], aims to reduce the estimator’s delayed response
to an abrupt noise rise and to mitigate the speech leakage
into the noise PSD estimates. For the SPP estimation to
benefit from inter-frame correlations of the speech signal,
[6] proposes to incorporate a first-order conditional max-
imum a posteriori (MAP) criterion into the MCRA noise
tracker resulting in the MCRA-MAP approach.

Another well-known MCRA-based noise PSD tracker
developed by the author of the MCRA method is an im-
proved MCRA (IMCRA) approach [4], which upgrades
the minimum tracking in speech activity and the SPP es-
timation of the MCRA noise tracker. Additionally IM-
CRA approach implements a sophisticated bias compen-
sation not available in the MCRA method.

Using Bayesian inference for the estimation of the
noise PSD estimate is a particular attribute of the two
MMSE-based approaches [10] and [7], which also make
use of the output smoothing technique. Although [10] and
[7] use the same estimation rule, they embed it in the esti-
mation procedure in different ways. While [10] named fur-
ther as MMSE-VAD applies the MMSE estimator only for
time-frequency bins without speech activity (as a VAD-like
estimation), [7] called MMSE-BM implements a bias com-
pensation and a minimum search techniques. The last tech-
nique serves in [7] to realize a so called safety-net method
for overcoming a complete locking of the algorithm. Note,
that we neglected a bias compensation of the MMSE-VAD
approach as suggested by the author in [10].

Table 2 gives a summarizing overview over the vari-
ous techniques used in the noise PSD trackers considered
here. Note, that all noise PSD trackers mentioned above
are causal and none of them needs any training phase.

5 Experimental evaluation

To evaluate the performance of the noise PSD trackers, we
carried out a single-channel speech enhancement task on
the development dataset of the third computational hear-
ing in multisource environments (CHiME) challenge [21],
where signals are sampled at 16kHz. The simulated iso-
lated data of the development dataset consist of 410 utter-
ances in every of 4 different noise environments (on the
bus, in a cafe, in a pedestrian area and on a street junc-
tion) containing around 2.88 hours of speech data overall.
Note, that we used recordings of the 5" tablet microphone.
The input global SNR of this data varies from —3dB up to
33dB, with an average of about 6 dB. For signal processing
we transformed the data using a STFT size of 1024 with a
shift of 256 and a Blackman window.

The proposed DNN for causal NPP estimation is
trained on the training set of the third CHiME challenge
[21]. Tt is well known that DNNs perform the better, the
more data is available during training. We therefore used
all six available channels during the training phase of the
network. This also allows us to work with a mini-batch
size of six without any need for masking or zero-padding.
We employ ADAM [22] with a fixed o = 0.001 and full

backpropagation through time [23]. Additionally, if the
norm of a gradient for this network was greater than one,
we divided the gradient by its norm [24]. To achieve a bet-
ter generalization, we used dropout for the input-to-hidden
connection of the LSTM units [25] and for the input of the
ELU Ilayers [26], see Table 1. We never used dropout for
the last layer. 8 epochs were sufficient to train the network.

To ensure the evaluation of the considered noise PSD
trackers under the same conditions we assume for all ap-
proaches, that the first five frames in the beginning of every
utterance are noise-only. The source code of the follow-
ing noise PSD trackers was either provided by the original
authors or taken from publicly available sources: MS [2],
MCRA [3], IMCRA [4], MMSE-BM [7], BSMS [8] and
SPP-FP [11]. The other noise trackers were implemented
according to their published description.

Since the true noise PSD is not known, a noise peri-
odogram | D(k, ¢)|* smoothed via recursive averaging with
a constant smoothing factor ayes € (0;1) is often used as
a reference noise PSD for the performance evaluation of
the noise PSD estimators [27, 28]. The main disadvantage
of this technique is the dependence of the optimal param-
eters of the noise PSD trackers on the choice of ayet. Ob-
serving that the knowledge of the true noise periodogram
|D(k,£)|* delivers the best performance in spectral speech
enhancement compared to use of a smoothed noise peri-
odogram for different values of auef, we suggest to choose
|D(k,¢)|> without any smoothing as the noise reference
PSD similar to [11]. For performance evaluation of the
noise PSD tracking we used the log-error mean (LEM) and
a log-error variance (LEV) measures, which are defined in
[29] and correspond to the noise PSD estimation error and
the variance of the estimator, respectively.

To evaluate the impact of the noise PSD estimators on
speech enhancement, we integrated the noise trackers in
a single-channel speech enhancement system depicted in
Fig. 1. Using a noise PSD estimate Ap (k,£) an a posteriori
SNR estimate is calculated

. _ Y (k0P
’y(k‘,f) = S\D(k%f) )

which is used in the decision directed (DD) approach for
the a priori SNR estimation [30]. For the DD approach
we used a weighting factor 0.98, a minimum value of the
a priori SNR of —18dB and a real-valued log-spectral am-
plitude (LSA) gain function Gysa(k,¢) [31, 32]. STFT
coefficients of an enhanced signal S(k,¢) are calculated
by applying a gain function

G(k,0) = max(Grsa(k,£), Gmin) (6)

with a gain floor Gphi, = —18dB to the noisy STFT coef-
ficients Y (k, ) [33]. As performance measures for speech
quality of enhanced signals and noise reduction we chose
the mean opinion score - listening quality objective (MOS-
LQO) measure of enhanced signals [34] and the global out-
put SNR denoted by SNR,, respectively.

(&)

~ | decision A
noise gl directed G 5
Y /A PSD with

Y2 tracker Ap LSA gain

Figure 1: Single channel speech enhancement system.
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Figure 2: Experimental evaluation of the proposed DNN-NPP approach compared to the state-of-the-art noise trackers
for the recommended (rec) and the optimized (opt) parameter sets: (a) noise PSD tracking performance in terms of LEM
and LEV measures, (b) impact on the resulting speech enhancement in terms of the SNR,; values and MOS-LQO scores.

Our experiments showed, that using the parameters of
the considered noise trackers recommended by the authors
did not lead to the best performance in terms of the used
performance measures. Therefore we carried out a param-
eter optimization via a traditional grid search method on
25 % of the development set containing all 4 noise envi-
ronments. As a performance metric for the parameter opti-
mization we applied an average over all used performance
measures scaled on the range [0; 1] on manually specified
subset of parameters to be optimized.

The parameter optimization improved the noise tracker
performance especially in terms of LEM and SNR,; mea-
sures by 9.7 % and 23.5 %, respectively. A noteworthy out-
come of our parameter optimization is the choice of the
length of the window for the minimum search, which was
set to 16 frames, corresponding to the time window of ca.
0.25s. This value is relatively small compared to the win-
dow length in the range [0.6s;1.1s] recommended in the
literature [2, 20]. Note, that a significant SNR,, improve-
ment of MCRA and EMCRA approaches achieved by op-
timization occurred on cost of speech quality loss of en-
hanced signals. These results confirm a trade-off between
speech quality and noise suppression [35].

The remaining 75 % of the development set was used
for the evaluation of the proposed approach denoted by
DNN-NPP compared to the approaches from Table 2. The
resulting performance measures, averaged over all utter-
ances and noise environments, are depicted in the Fig. 2.
Since our parameter optimization did not lead to a joint
improvement in all performance measures, we decided to
publish the resulting metrics for both the parameters rec-
ommended by their authors and the optimized parameters
denoted as rec and opt, respectively.

It came as a surprise to us to see by how much the
proposed DNN-NPP approach outperformed all state-of-
the-art noise PSD trackers in all considered performance
measures. Our evaluation results of the noise PSD track-
ing depicted in the Fig. 2(a) show that the noise trackers
achieve quite different performance. Among the state-of-
the-art approaches the best performance is achieved by the
MMSE-BM and SPP-FP approaches. Compared to these
two methods the proposed DNN-NPP noise tracker re-
duces strongly the LEM and slightly the LEV metrics by

approximately 1 and 1.5 points, respectively. Furthermore
the improved noise tracking of the proposed approach has
a striking positive impact on the quality of the enhanced
speech signals, as pictured in the Fig. 2(b). Among the
state-of-the-art approaches the MMSE-VAD, MMSE-BM
and SPP-FP noise trackers deliver the best signal quality.
While the EMCRA, MCRA and VAD-RA approaches are
particularly well at noise reduction, their estimates cause
a poor quality of the enhanced signals. Due to a robust
NPP estimation delivered by DNN, the proposed DNN-
NPP method leads to the enhanced signals with the best
noise reduction and the best signal quality among the state-
of-the-art approaches. While the average improvement
achieved by the proposed approach compared to the best
state-of-the-art approaches in terms of SNRy,¢ comes to
a significant value of 1.3dB, the average improvement in
MOS-LQO reaches small but consistent 0.03 score points.

6 Conclusions

In this paper we have presented a causal noise PSD track-
ing algorithm which employs a DNN-based noise presence
probability estimation. The proposed system is a hybrid
system, consisting of a DNN-based noise PSD tracker and
a conventional speech spectral enhancement system. In
an extensive experimental evaluation we observed that the
proposed noise tracker outperforms the ten state-of-the-art
noise tracking algorithms taken for comparison w.r.t. both
the measures of noise PSD tracking performance and the
measures of a speech enhancement system using the noise
PSD tracker as one component. While the DNN-based
noise tracker is computationally more demanding than the
other approaches, it can be used in low-latency real-time
applications and can cope with nonstationary noise. In fu-
ture work, more components of the speech enhancement
system will be replaced by neural processing.
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