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Abstract

This contribution introduces a novel causal a priori signal-
to-noise ratio (SNR) estimator for single-channel speech
enhancement. To exploit the advantages of the general-
ized spectral subtraction, a normalized c-order magnitude
(NAOM) domain is introduced where an a priori SNR es-
timation is carried out. In this domain, the NAOM coeffi-
cients of noise and clean speech signals are modeled by a
Weibull distribution and a Weibull mixture model (WMM),
respectively. While the parameters of the noise model are
calculated from the noise power spectral density estimates,
the speech WMM parameters are estimated from the noisy
signal by applying a causal Expectation-Maximization al-
gorithm. Further a maximum a posteriori estimate of the
a priori SNR is developed. The experiments in different
noisy environments show the superiority of the proposed
estimator compared to the well-known decision-directed
approach in terms of estimation error, estimator variance
and speech quality of the enhanced signals when used for
speech enhancement.

1 Introduction

A single-channel speech spectral enhancement system
based on statistical methods is usually composed of three
modules: a noise tracker, an a priori SNR estimator and
a gain function operator [1]. According to [2] the a priori
SNR estimator provides a dominant parameter of a spec-
tral gain function applied to short-time Fourier transform
(STFT) coefficients of the noisy signal for noise suppres-
sion. A famous approach for a priori SNR estimation
is the decision-directed (DD) approach [3]. It combines
the information of the noise tracker and the gain function,
and thus successfully reduces the musical noise in the en-
hanced signal. However, the DD approach suffers from
slow response to an abrupt change of the instantaneous
SNR taking place on speech onsets [4], because it uses the
gain function of the previous frame.

Many different approaches for a priori SNR estima-
tion were developed in recent years [5—-13]. To reduce the
estimation error during speech activity, a model-based ap-
proach was recently presented in [14]. There, the magni-
tudes of the clean speech STFT coefficients are modelled
by a Gaussian mixture model (GMM) proposed in [15].
The GMM-based estimation helps to decouple the a priori
SNR estimation and the gain function operator. A draw-
back of this approach, however, is the necessity of a prior
GMM training phase.

Inspired by the advantages of the generalized spectral
subtraction (GSS) regarding a reduction of musical noise
investigated in [16], we propose to carry out the a priori
SNR estimation in the NAOM domain by using a Weibull
distribution [17]. In contrast to [17] we suggest to model
the NAOM coefficients of the noise signal by a single
Weibull distribution and of the clean speech signal by a
Weibull mixture model. To reduce the number of mix-

ture components we allow the WMM components to have
a shape parameter /3 different from the spectral magnitude
order «. The WMM parameters are determined from the
noisy observations by an Expectation Maximization (EM)
approach. Given the model parameters we derive a max-
imum a posteriori (MAP) estimator of the NAOM coeffi-
cients of the clean speech, which are used for the calcula-
tion of the a priori SNR. Further, a causal implementation
of the proposed estimator is derived.

The remainder of this contribution is structured as fol-
lows: in Section 2 we develop a MAP-based estimator of
the a priori SNR based on WMM. In Section 3 we opti-
mize the parameters of the proposed estimator and describe
the results of the experimental evaluation of the proposed
approach compared to the DD approach, before conclu-
sions are drawn in Section 4.

2 MAP estimation of the a priori SNR
based on Weibull mixture models

We observe the STFT coefficients of a clean speech sig-
nal corrupted by uncorrelated additive noise denoted by
Y (k,£) = S(k,¢) + N(k,¢), where S(k,¢) and N(k,¢)
represent the STFT coefficients of the clean speech and
of the noise signal, respectively, with a frequency bin
index k € [I;K] and a frame index ¢ € [1;L]. Moti-
vated by a central limit theorem STFT coefficients S(k,¢)
and N (k,¢) are modelled as non-stationary complex val-
ued zero-mean Gaussian random processes with PSDs

As(k,f) = E [|5(/<;,e)|2} and Ay (k,0) = E [|N(k,z)|2},

where E[-] denotes the expectation operator [3, 18]. Then
the a priori SNR is defined as:

£k b) = % )

Given an estimate of Ay (k,¢), the a priori SNR estimator
aims to estimate &(k,¢) from the periodogram |Y (k,¢)[%.

2.1 Normalized «-order magnitude domain

In the GSS performance improvements have been observed
when carrying out the spectral subtraction in the so-called
a-domain, where o = 2 corresponds to the PSD domain
[16]. To utilize the benefits of processing in such an alter-
native domain for the a priori SNR estimation, we consider
the a-order magnitudes (AOM) of STFT coefficients and
assume its additivity as in [19]

Y (k,0)|% = |S(k, O] + N (k)] )

where o > 0 is the spectral magnitude order. Furthermore,
to obtain statistical models, which are independent of the
signal energy, the AOM coefficients in (2) are normalized
to the root of the frequency - dependent averaged power of



the clean speech AOM coefficients defined as

1 & N
Ps(k) =7 Y |S(k,0)? 3)
L=
resulting in the normalized AOM (NAOM) coefficients
S(k,0)|¢ N(k,0)|*
Salt) = BEOT 4y 0 = EDI ()
Ps (k) Ps(k)

with E[S2(k,£)] = 1. The noisy NAOM coefficients are
Y (k,0)"
Ps(k)

Note, that we will drop the indices k and ¢ in the following
wherever possible without sacrificing clarity.

Under the stated statistical assumptions, the noise
NAOM coefficients N, (k,¢) are Weibull distributed
and follow the probability density function py,(n) =
Weib (n; Ay, , o) with the Weibull distribution defined as

Yo (k,0) = = Sa(k,0)+ No(k,0).  (6)
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Weib (z; M\, ) = —5 7 exp( 5 ) e(x) (1)

where the spectral magnitude order « is a shape parameter,
A > 0 a scale parameter, and e(x) the unit step function.
For the k-th order raw moment of a Weibull distributed
random variable X one has
X" = X% T (s E+1) ®)
In order to achieve a robust a priori SNR estimation we
propose to model N, (k,£) by a single Weibull distribution
with a frequency-dependent time-invariant scale parameter
AN, (k) calculated from the noise PSD via

An(E,0), (9) A (k)= An(k) (10)

| YV Ps(k)
In this way, we model the noise NAOM coefficients by
= Weib (n; An,, (k), @). 11

SIE
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Based on the sparseness of the clean speech STFTs we sug-
gest to model the clean speech NAOM coefficients S, (k, £)
in (4) by a Weibull mixture model (WMM)

M
=) - Weib (s, A (k), B), (12)

m=1

Ps, (k) (s)

where M is the number of components, 7, the weight of
the m-th component, and A, (k) the component-specific
frequency-dependent scale parameter. Furthermore, we
take deviations from the probability model into account by
using a shape parameter 3 # «. This allows to model a
variability of energy-rich clean speech NAOM coefficients
by using more heavy-tailed Weibull distribution (5 > «)
resulting in reducing the number of necessary mixture
components. While the first WMM component m = 1
aims to model low-energy NAOM coefficients of the clean
speech signal, the other WMM components should model
energy-rich coefficients. According to (8), the parameters
of (12) fulfill the condition E[S? (k,£)] = 1 if

Zﬂ'm )\'6

1

NG (13

In Fig. 1(a) a distribution of white noise NAOM coeffi-
cients and the estimated distribution py, (n) are depicted
for a single frequency bin. slope is The distribution is well
represented here by the estimation. Fig. 1(b) shows a dis-
tribution of the clean speech NAOM coefficients (black)
for a single frequency bin and the estimated WMM pg, (s)
for M = 2 (red), where the first component (green) rep-
resents NOAM coefficients with low energy and the sec-
ond component (blue) the more scattered high-energy co-
efficients. To capture the complexity of the clean speech
NAOM coefficients, a mixture model with at least two-
components is necessary.
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Figure 1: Histograms of NAOM coefficients of the fre-
quency bin centered at 718.75Hz and the estimated distri-
butions: (a) for a white noise signal with &« = 0.7 and (b)
for a clean speech signal with o = 0.7 and 8 = 2.5.

2.2 Maximum a-priori estimation

Based on (6) and given pyy, () () and pg,, (1) (s), the max-
imum a-posteriori (MAP) estimate of the clean speech
NAOM coefficient S, (k,£) can be obtained from

8) Psa(k)(8),  (14)

< P8 (k)| Yk, 0) (5Y)

SMAP (&, €) = argmax puy,, ) (y —

where y = Y, (k,f) is the current observation. Using the
models (11) and (12), the MAP estimation turns out to be
a maximum search in the interval s € (0;y) as follows

SMAP (k. £) = argmax [M (s
s€(0sy) po- )\Na

M 2 2
Z )\—exp(—A—sﬂ——(y—s)Q) . (15)
m=1""m m

After derivation with respect to s € (0;y) we have to solve
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To enable an efficient root finder for (16), we suggest two
simplifications of (16), which lead to the approximative an-
alytically calculated roots. First, to get rid of the exponen-
tial function we suggest to approximate it at s = 0 similar
to [20]. And, second, we propose to use 5 =a = 1 in (16),
since we observed a stable behaviour of a root finder for
this values. Both simplifications applied to (16) results in

—+ K — —+ K,
2
y YK
K ~1])- -0 17
+ I(ANQ )S-i— > (I7)

with constants K| = ):%:] ;—Z and K, = ):%I:l ’;Tm Solv-
ing (17) using the Cardano’s formulas delivers the desired
SMAP ([, ¢) estimate [21], which is used for calculating the

a-priori SNR estimate via

(SMAP (1, 0) - /PSR )
An (K, 0)

If more than one root of (17) is found in the interval (0;y),
the largest one is chosen as the solution.

Qe

E(k,0) = (18)

2.3 Estimation of WMM parameters

For the MAP estimation (14), we assumed the knowledge
of pg, (k)(s) from (12). In this section we discuss the es-
timation of the parameters of the two-component WMM
PSa (k) (8)-

Cappé discovered, that it is advantageous for a priori
SNR estimation to use a minimum value of a priori SNR
estimate &ni, , which should be chosen according to ’the
average a priori SNR’ in the time-frequency slots "con-
taining noise only’ [2]. Inspired by this, we suggest to in-
tegrate Emin in the clean speech model pg, (1) (s) by setting
A1(k) in a way that, the mean of the first WMM compo-
nent (k) corresponds to the &min. According to (1) and
(4), p1(k) can then be calculated as

o
2

()\N (k) . E1min)
VPs

where Pg = % YK | Ps(k) is the frequency-independent
power of the clean speech AOM coefficients. Using Pg in-
stead of Pg (k) has proven to be advantageous for a robust
causal a priori SNR estimation described below. With (8)
and (19) we then get

(k) = 19)

k) "

r (§ + 1)
The parameter A\ (k) of pg, () (s) can be calculated by

using the estimate obtained from the EM algorithm for the
WMM presented in [22] with

i (k) = (20)

1 & . 2
Az(k):m;w(iz,aﬂa(k,@ﬂ, (21)

where Ly (k) = Y5 72(k, £), with the responsibility of the
2"d mixture component being computed in the E-step as

) - Weib (ga(kae)» )\Z(k)a B)

J% T - Weib (Sa (K, £); A (K), B)
m=1

Here, S,,(k,?) denotes the denoised NAOM coefficients
. M2 _ra
Sa(k,l)=max|Y,(k,{) — ——-T(=-+1), k)|,
(k.0) ( () = == T(5 )um)
(23)

taken into consideration that the second WMM component
models the high-energy NAOM coefficients. The EM al-
gorithm is initialized by m = 0.5 and A\»(k) = 1. To en-
sure E[S2(k,¢)] = 1, the weights are adjusted after con-
vergence of the EM algorithm with

r(51+1) —Mi(k)?

1
m(k)=———F———=. (24)

mi(k) =1—m(k), " k)P — (k)P

2.4 Causal implementation

In Sections 2.1, 2.2 and 2.3 a non-causal a priori SNR esti-
mation was presented assuming the knowledge of the noisy
NAOM coefficients Y, (k,¢) for V¢ € [1;L]. However, a
causal low-latency solution is required for most applica-
tions. To gain a causal estimation, the equations (3), (9)
and (21) For this, every average over time has to be done
recursively. Thus, the corresponding parameters become
frame-dependent. The estimation of Pg(k) in (3) turns to

Ps(k,0) = max (Py (k,{) — Py (k,€), €. - Pn(k,0))
(25)
where

(-1 1 N
Py (k,0) = == Py (kL= 1)+ 5 [Y (K0P, (26)

Py (k) = 671~PN(k,£f 1)+%-)\N(k,€)a-l"(a+ 1).
(27)

Further, the calculation of Ay (k) in (9) is modified to

_ —1 — 1
(k€)= == An (k1) 5 A (k,0). (28)

Since Ps(k,¢) and Ay (k,¢) are current estimates of the
time-independent parameters Pg(k) and An (k) respec-
tively, the values calculated in equations (26)-(28) lose
their ability to react to local statistics with increasing /.
Finally, the estimation of A\, (k) in (21) is altered to

’)/z(k,g)
Ly(k,?)

Lo(k,0-1)
La(k,0)

Su(k,0)F
(29)

)\2(1{?,6): )‘Z(kjae_l)—i_

with Ly(k,0) = Ly(k,¢-1) + 72 (k,£). To keep the com-
putational effort low, we suggest to calculate v, (k,£) just
once for the current observation Yy, (k, £) and carry out only
one iteration of the EM algorithm in each frame.

The proposed causal estimation procedure can be sum-
marized in an algorithm with 6 steps, which are outlined in
the Algorithm 1.

3 Experimental results

To investigate the performance of the proposed a pri-
ori SNR estimator in noisy environments, an experimen-
tal evaluation is carried out on the training subset of
the single-channel clean speech signals of the CHiME
database [23]. The isolated signals of one female and one
male speaker at a sampling of F's = 16kHz are concatena-



Algorithm 1 The WMM-based a priori SNR estimator

Input: |V (k,0)2, An(k,0)

Output: a priori SNR estimate (k, /)

Initialization: setm; =m =05, =1and o, 8

for all time frames ¢ do
1. Estimate Pg(k,¢) by utilizing (25)-(27)
2. Compute Y, (k,¢) and Ay, (k, £) by (6), (28), (10)
3. Calculate A\ (k,¢) by (19)-(20) and Xy (k,¢) with
(29) by executing one EM-iteration (22)-(23)

4. Adjust 7 (k,€) and m (k,£) via (24)
5. Find SMAP(k, ) as a root of the polynomial (17)
6. Obtain a priori SNR estimate £(k,¢) by (18)

ted to test signals of 2 minutes length each. The signals of
7 noise types are taken from the Noisex92 database: white,
pink, f16, hfchannel, factory-1, factory-2 and babble [24].
The noise signals are artificially added to the clean speech
signals at a global SNR ranging from —5dB to 25dB in
steps of 5dB. For STFT we used a 512 samples Hamming
window and a shift factor 0.25.

The noise PSD Ay (k,¢) is estimated by the minimum
statistics method [25]. For comparison purposes the a pri-
ori SNR is also estimated by the DD method with a weight-
ing factor of 0.98 [3]. Both the proposed WMM-based and
the DD approach used the same lower bound for a pri-
ori SNR &pin = —18dB [2]. For the DD approach a log-
spectral amplitude (LSA) gain function is used [26]. STFT
coefficients of an enhanced signal are calculated here by
employing the LSA gain with a gain floor Gy, = —25dB
[27]. For the proposed WMM-based approach the Wiener
filter is applied [28], which does not need any additional
gain floor as our experiments showed.

To find the optimal values o and 8 for the WMM-
based approach, we carried out speech enhancement of
female and male speech signals (other than test signals)
of 1 minute length each distorted by all considered noise
types for values « € [0.3;1.2] and 3 € [1;5]. Further we
calculated the wide-band mean opinion score (MOS) lis-
tening quality objective scores of the enhanced signals
[29]. Fig. 2 shows the positive MOS improvement

AMOS = max(MOSWMM — MOSDD , 0) (30)

averaged over all simulated values of global SNR as a
function of o and 5. It is obvious, that the proposed ap-
proach outperforms the DD approach for a wide range of
« and 3 values. However, it achieves the best performance
for o € [0.55;0.7] and 8 € [2;5]. Similar to [16] we ob-
served less musical noise in enhanced signals for values of
« smaller than 1. For further experiments cope = 0.64 and
Bopt = 2.7 are chosen.

To investigate the performance of the a priori SNR es-
timation we further calculated the Itakura-Saito Distance
(ISD) [30] and the variance of the logarithmic error vari-
ance (LEV) [31]. While the ISD is the measure of the
mean estimation error, the LEV represents the estimator
variance. Smaller values of ISD and LEV correspond to
better estimator performance. Since the true a priori SNR
(1) is not known, the instantaneous a priori SNR values
calculated from the available clean speech and pure noise
signals are used as reference a priori SNR. Table 1 sum-
marizes the resulting ISD, LEV and MOS values of the
considered approaches for the test signals distorted by var-
ious noise types for different SNR values.

a
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Figure 2: MOS improvement of the proposed algorithm
over the DD method averaged over all considered noise
types and all SNR values as a function of « and 5.

All performance measure show poorer values with de-
creasing global SNR. In terms of all considered perfor-
mance measures the proposed approach outperforms the
DD method. The proposed approach does not seem to
suffer from a priori SNR overestimation since this would
be penalized by the ISD measure. The reduction of ISD
achieved by the WMM-based approach increases with de-
creased global SNR and reaches 14-19% on average. In
contrast to the ISD measure, we boserved the best reduc-
tion of the LEV measure for the smallest and the highest
global SNR values. In comparison to the DD approach the
proposed a priori SNR estimator reduces the LEV measure
on average by around 15%. The reduction of the estima-
tion error and of the variance of the estimator leads con-
sequently to an improvement of the speech quality of the
enhanced signals by about 4.3 %, as measured by MOS. In
light of the achieved performance improvement it should
be mentioned that the computational effort of the proposed
approach is much higher than that of the DD approach.

SNR, dB -5 0 5 10 15 20 25
DD 48.8 44.0 39.6 349 30.2 24.5 19.1
WMM 42.6 38.1 34.1 30.4 27.3 23.0 18.9
DD 53.1 49.0 46.4 45.1 455 474 50.5
WMM 45.6 439 42.6 41.1 39.0 37.0 359
DD 1.11 1.30 1.63 2.09 2.57 3.00 3.39
WMM 1.18 146 1.77 2.13 2.62 3.16 3.61

ISD

LEV

MOS

Table 1: Resulting ISD, LEV and MOS values of the pro-
posed WMM-based approach and of the DD method aver-
aged over considered noise types for different SNR values.

4 Conclusions

In this contribution we proposed a novel causal a priori
SNR estimator based on a Weibull mixture model for the
normalized a-order magnitudes and optimized its parame-
ters with respect to the achievable MOS values. The pro-
posed estimator achieves superior results compared to the
popular decision directed approach [3] for all examined
cases and performance measures. The price to pay is, how-
ever, a higher computational cost, which should be reduced
in our future work by developing a universal WMM.
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