

D General Priori IZed S Z R **ecisi** ESti 0 ation Irected Jsing Approach

Aleksej Chinaev and Reinhold Haeb-Umbach, University of Paderborn , Germany, {chinaev, haeb}@nt.upb.de, http://nt.upb.de

Introduction

- Generalized spectral subtraction has been shown to be superior.
- Here we generalize the Decision estimation of a priori SNR $\xi(k,\ell)$. Directed method for an improved
- Generalization: Move from the PSD domain to a generalized ho-domain
- Generalized a priori SNR

$$\xi_{\rho}(k,\ell) \stackrel{\Delta}{=} \frac{E[|S(k,\ell)|^{2\rho}]}{E[|D(k,\ell)|^{2\rho}]}$$

with clean speech STFT $S(k, \ell)$, noise STFT $D(k,\ell)$ and an arbitrary $ho \in \mathbb{R}_{>0}$

Generalized a posteriori SNR

$$\gamma_{\rho}(k,\ell) \stackrel{\Delta}{=} \frac{|Y(k,\ell)|^{2\rho}}{E[|D(k,\ell)|^{2\rho}]}$$

with noisy STFT $Y(k,\ell) = S(k,\ell) + D(k,\ell)$

Decision Directed (DD)

- Assumption: Uncorrelated, complex normal distributed $S(k,\ell)$ and $D(k,\ell)$
- $ightharpoonup \gamma(k,\ell)$ is exponentially distributed
- Most popular a priori SNR estimator:
- $\hat{\xi}^{\text{DD}}(k,\ell) = \alpha \cdot \tilde{\xi}(k,\ell-1) + (1-\alpha) \cdot \hat{\xi}^{\text{ML}}(k,\ell)$

propagated a priori SNR of previous

processing step

- $\tilde{\xi}(k,\ell-1) = G^2(k,\ell-1) \cdot \hat{\gamma}(k,\ell-1)$
- maximum likelihood (ML) estimate based on the current observation

$$\hat{\xi}^{\mathsf{ML}}(k,\ell) = \mathsf{max}(\hat{\gamma}(k,\ell) - 1\,,\,0)$$

 <u>Drawback</u>: Slow response to an abrupt change in the instantaneous SNR

eneraliz **PQ**

Generalized a posteriori SNR

$$\gamma_{\rho}(k,\ell) = \gamma^{\rho}(k,\ell)/\Gamma(\rho+1) \tag{2}$$

<u>S</u>: Weibull distributed

$$p_{\gamma_{
ho}(k,\ell)}(\gamma_{
ho}) = \mathsf{Weib}(\gamma_{
ho};\, \xi_{
ho}(k,\ell),\;
ho)$$

with $\xi_
ho(k,\ell)$ as a parameter.

Estimation of $\xi_{\rho}(k,\ell)$ using DD approach:

$$\hat{\xi}_{\rho}^{\mathsf{DD}}(k,\ell) = \alpha_{\rho} \cdot \tilde{\xi}_{\rho}(k,\ell-1) + (1-\alpha_{\rho}) \cdot \hat{\xi}_{\rho}^{\mathsf{ML}}(k,\ell)$$

propagated processing step a priori SNR of previous

$$\tilde{\xi}_{\rho}(k,\ell-1) = G^{2\rho}(k,\ell-1) \cdot \hat{\gamma}_{\rho}(k,\ell-1)$$

observation estimate of $\xi_{\rho}(k,\ell)$ from the current

$$\hat{\xi}^{\mathsf{ML}}_{\rho}(k,\ell) = \left[\, \mathsf{max}(\, \hat{\gamma}(k,\ell) - 1 \,,\, 0) \, \right]^{\rho}$$

- Two ways to get a priori SNR estimate
- Conventional way: Based on definition (1)

$$\hat{\xi}^{\mathsf{GDD}}(k,\ell) = \left[\hat{\xi}_{\rho}^{\mathsf{DD}}(k,\ell)\right]^{\frac{1}{\rho}} \tag{3}$$

realization Alternative way: Considering $\hat{\xi}_{\rho}^{\mathrm{DD}}(k,$ <u>o</u> a random variable as a

$$\xi_{\rho}^{\mathsf{DD}}(k,\ell) \stackrel{\triangle}{=} \frac{|S(k,\ell)|^{2\rho}}{E[|D(k,\ell)|^{2\rho}]}$$

one has an alternative GDD estimate

$$\hat{\xi}^{\mathsf{GDD}}(k,\ell) = \left[\hat{\xi}_{\rho}^{\mathsf{DD}}(k,\ell) \cdot \Gamma(\rho+1)\right]^{\frac{1}{\rho}}.$$
 (4)

GDD simplifies d method for P

rameterization 9

with white noise (Noisex-92) Set parameters ho and $lpha_
ho$ in experiments

Gain SNR over the DD method using $lpha_{
ho}^{
m opt}$ for global input of mean opinion score (\(\D\)MOS) of the GDD $\{0, 10, 20, 30 \text{ dB}\}$: (a) for (3), (b) for (4).

- Low input SNR: DD method is an optimal choice for a priori SNR estimation.
- Medium to high input SNR: approach outperforms the DD method. The GDD
- Optimal choice of ρ and α_{ρ} depends on the global input SNR.
- an ES timate adaptation function $\rho(\Upsilon)$: a global input SNR \dashv and apply

final $\rho(\Upsilon)$ with corresponding values of $\alpha_{\rho}^{\mathrm{opt}}$ and applied equations.

Txpe 3 ental

Perfor with ρ manc **Ye** 0 gain the of the approach GDD \bigcirc

0

destr-engine destr-oper

babble buccaneer-1 buccaneer-2

0

factory-factory-hf-chan

-chănnel

machinegun pink

leopard m-109

averaged over Gain in terms (ΔSNR_{OUT}) q <u>o</u> results for different noise **△MOS** and \dashv \bigcap $\boldsymbol{\omega}$ types $\{0, 10, 20,$ global output (Noisex-30 dB}. SZZ 92)

NR_{OUT}

dB

Avera ged 2 9 <u>a</u> nois 0 Ų pes

0.05 and SNROUT N

► TAVG <u>О</u>... from ∞ Q W dp Q N 0

Δ SNR _{OUT} / dB	∆MOS	Υ/dB
0.5	0	0
1.1	0.01	10
1.2	0.04	20
5	0.15	30

- CHIM speech quality database: vvi... Without 0 loss 9
- <u>G</u> 5.8 <u>д</u>В: from 9.6 dB p <u>1</u>0.
 Umage: Control of the dB

jonclusi

- appro Exten SNR domain ach Sion for 9 the the S Decision **(D** 3 the Dire generalized cted
- Notable with a moderate increase gain noise speech suppression quality

