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Abstract

In this contribution we investigate a priori signal-to-noise ra-

tio (SNR) estimation, a crucial component of a single-channel

speech enhancement system based on spectral subtraction. The

majority of the state-of-the art a priori SNR estimators work in

the power spectral domain, which is, however, not confirmed to

be the optimal domain for the estimation. Motivated by the gen-

eralized spectral subtraction rule, we show how the estimation

of the a priori SNR can be formulated in the so called gener-

alized SNR domain. This formulation allows to generalize the

widely used decision directed (DD) approach. An experimental

investigation with different noise types reveals the superiority

of the generalized DD approach over the conventional DD ap-

proach in terms of both the mean opinion score - listening qual-

ity objective measure and the output global SNR in the medium

to high input SNR regime, while we show that the power spec-

trum is the optimal domain for low SNR. We further develop a

parameterization which adjusts the domain of estimation auto-

matically according to the estimated input global SNR.

Index Terms: single-channel speech enhancement, a priori

SNR estimation, generalized spectral subtraction

1. Introduction

The a posteriori SNR and the a priori SNR estimation are two

crucial tasks in any so called analysis-modification-synthesis

(AMS) framework for single-channel spectral enhancement, of-

ten referred to as spectral subtraction (SS) systems. Based on

their estimates the desired gain function can be calculated and

in the modification step applied to the short-time Fourier trans-

form (STFT) of the noisy signal. While the a posteriori SNR

is considered as a correction parameter of the gain function, the

a priori SNR has been advised to be used as its dominant pa-

rameter [1]. Since both SNR quantities are defined in the power

spectral density (PSD) domain, they are usually calculated from

PSD estimates of the noise signal and of the clean speech sig-

nal. For this first the a posteriori SNR is estimated by applying

one of the many sophisticated noise PSD trackers, e.g., the min-

imum statistics (MS) approach [2, 3] or its version extended by

a Bayesian postprocessor [4]. The following a priori SNR esti-

mate is usually calculated as a weighted sum of two terms in the

spirit of the decision directed (DD) approach [5]. The first is the

a priori SNR estimate calculated from the spectral magnitude of

the enhanced speech signal of the previous frame, and the sec-

ond is the maximum likelihood (ML) estimate of the a priori

SNR based on the current a posteriori SNR estimate. Thus the

a priori SNR estimation exploits information of both the noise

PSD tracker and the used gain function, and it can be considered

a central component of any spectral AMS framework.

Without exaggeration one can assert that the DD approach

is the most popular one for the a priori SNR estimation. Es-

sentially, its simplicity and good performance contributed to

its tremendous acceptance. However, the DD approach suffers

from one well known drawback – slow response to an abrupt

change in the instantaneous SNR known also as the reverbera-

tion effect [6]. The main reason for this is a constant weight-

ing factor, which should be set to about 0.98 to avoid the so

called musical noise in the enhanced signal, while simultane-

ously achieving a reasonable noise suppression.

Many approaches have been developed to overcome this

shortcoming. The authors in [7] and [8] propose the use of a

time-variant weighting factor, which is adapted by the energy

change of consecutive frames. In [9] a noncausal a priori SNR

estimator is developed, which is able to distinguish between

speech onsets and noise irregularities. In [10] the DD approach

is considered as a ’Kalman filter’-like estimator consisting of

a propagation- and an update-step. Beside the non-causal es-

timator, a causal approach is proposed, which is more relevant

in a real-world application. An improved version of the DD ap-

proach was developed in [6], where the a priori SNR estimation

is refined by applying the gain function of the previous time step

to the current observation instead of the previous one. In [11] an

adaptive weighting factor incorporating a sigmoid-type control

function calculated on the transient of the a posteriori SNR is

proposed. In [12] a data-driven approach is presented by using

two neural networks, one trained for speech absence and an-

other for speech presence in an elaborated preprocessing phase.

In [13] a modified sigmoid gain function is proposed, which is

mapped with the a priori SNR estimates instead of a posteriori

SNR in contrast to [11]. In [14] the conventional equation of the

DD approach is considered as a linear regression model, whose

coefficients are calculated by least squares optimization. To im-

prove the tracking ability, the DD equation is extended in [15]

by an additional momentum term with a time-invariant factor

chosen in the MMSE sense. To reduce the estimation errors in

speech presence, the use of Gaussian mixture models of clean

speech has been lately proposed in [16]. The models had to be

estimated in an extra training phase.

Following its definition in the PSD domain, all mentioned

approaches also estimate the a priori SNR in the PSD domain

[17]. The majority of them make use of the ML estimate of the

a priori SNR, which exploits the additivity assumption of the

PSDs of the clean speech and noise signals. On the other hand,

a recently published investigation [18] showed that the addi-

tivity of power spectra is not an optimal assumption in terms

of the quality of the speech signal enhanced by spectral sub-

traction. Earlier publications report, that the processed signals

enhanced by using a so-called generalized spectral subtraction

(GSS) sound ’less noisy’ [19] and of ’higher quality’ [20] com-

pared to the signals obtained by the conventional SS rule. The

GSS gain functions developed in [21] outperform slightly the

gain function of the conventional SS approach in the majority

of tests. Motivated by these observations we are going to inves-

tigate, whether the estimation of a priori SNR should best be



performed also in a domain other than the PSD domain.

The remainder of this contribution is structured as follows:

The DD approach is briefly revisited in Section 2. Next the

statistical modelling in the generalized spectral domain is de-

scribed in Section 3, followed by the derivation of the general-

ized decision directed approach and its parametrization in the

experiments with white noise. The experimental comparison

of the proposed GDD approach with the conventional DD ap-

proach is given in the Section 4, and the conclusions are drawn

in Section 5.

2. Decision directed approach

The spectral enhancement aims to estimate the clean speech

STFT coefficients S(k, ℓ) from the noisy STFT coefficients:

Y (k, ℓ) = S(k, ℓ) +D(k, ℓ) (1)

distorted by an additive noise signal with the STFT coefficients

D(k, ℓ), where k and ℓ are the frequency bin and frame indices,

respectively. S(k, ℓ) and D(k, ℓ) are modelled as two uncorre-

lated non-stationary complex valued zero-mean Gaussian dis-

tributed random processes with time-variant PSD parameters

λS(k, ℓ),E[|S(k, ℓ)|2], (2) λD(k, ℓ),E[|D(k, ℓ)|2], (3)

where E[·] denotes the expectation operator. The a posteriori

SNR γ(k, ℓ) and a priori SNR ξ(k, ℓ) are defined as in [5]:

γ(k, ℓ) ,
|Y (k, ℓ)|2

λD(k, ℓ)
, (4) ξ(k, ℓ) ,

λS(k, ℓ)

λD(k, ℓ)
. (5)

Similarly, using the additivity assumption of the power spectra:

|Y (k, ℓ)|2ρ = |S(k, ℓ)|2ρ + |D(k, ℓ)|2ρ. (6)

For ρ = 1 one can define the problem formulation for a priori

SNR estimation in the domain of the SNR quantities as follows:

estimate the a priori SNR ξ(k, ℓ) from the a posteriori SNR

γ(k, ℓ) = ζ(k, ℓ) + η(k, ℓ), (7)

where the instantaneous a priori SNR ζ(k, ℓ) and the ratio of

the instantaneous noise PSD to the (long-term) noise PSD pa-

rameter (NPR) η(k, ℓ) are defined as follows:

ζ(k, ℓ) ,
|S(k, ℓ)|2

λD(k, ℓ)
, (8) η(k, ℓ) ,

|D(k, ℓ)|2

λD(k, ℓ)
. (9)

Note, that in [22], where the a priori SNR is introduced for the

first time, it is defined as a random variable (8) and not as a

parameter (5) according to [5]. From (5) with (7) we get

ξ(k, ℓ) = E[ζ(k, ℓ)] = E[γ(k, ℓ)]− 1, (10)

a groundbreaking equation in sense of using ξ(k, ℓ) for calcu-

lation of gain functions instead of a posteriori SNR estimates

γ̂(k, ℓ) [23]. (10) is the power subtraction rule based on the

additivity assumption (6) for ρ = 1. Since γ(k, ℓ) is expo-

nentially distributed, (10) appears in the ML estimation of the

a priori SNR based on a single observation γ̂(k, ℓ) as in [5]:

ξ̂
ML(k, ℓ) = max(γ̂(k, ℓ)− 1, 0), (11)

where a maximum operator max(·) ensures the positiveness of

ξ̂ML(k, ℓ). According to [5] ξ̂ML(k, ℓ) appears as the second of

two terms in the DD estimate:

ξ̂
DD(k, ℓ) = α · ξ̃(k, ℓ− 1) + (1− α) · ξ̂ML(k, ℓ), (12)

where α is a weighting factor and ξ̃(k, ℓ−1) a propagated a pri-

ori SNR estimate of previous processing step defined as

ξ̃(k, ℓ−1) =
|Ŝ(k, ℓ− 1)|2

λ̂D(k, ℓ− 1)
= G

2(k, ℓ−1)·γ̂(k, ℓ−1), (13)

where G(k, ℓ − 1) is a gain function calculated by using the

previous a priori SNR estimate ξ̂(k, ℓ − 1). Note, that (12) is

not a recursive averaging but just a weighted sum of two terms,

because ξ̃(k, ℓ − 1) 6= ξ̂DD(k, ℓ − 1). In [5], ξ̃(k, ℓ − 1) is

introduced by dropping the expectation operator in (2), which

is the numerator of (5), because S(k, ℓ) is highly non-stationary.

Or in our notation, the instantaneous a priori SNR (8) is used as

a definition for the second term of the DD approach instead of

(5). Thus the DD approach makes use of both definitions of the

a priori SNR, as a parameter (5) and as a random variable (8).

To reduce a ’low-level’ musical noise, in [1] it is suggested

to introduce a lower bound ξmin for the a priori SNR and to

calculate the resulting a priori SNR estimate via

ξ̂
DD(k, ℓ) = max

(

ξ̂
DD(k, ℓ), ξmin

)

. (14)

The investigations in [24] showed that it is advantageous to use

in (13) the gain function in speech activity GH1
(k, ℓ) instead of

the gain function G(k, ℓ), which is applied to get the enhanced

STFTs Ŝ(k, ℓ) = G(k, ℓ) · Y (k, ℓ) and is calculated via

G(k, ℓ) = max (GH1
(k, ℓ), Gmin) , (15)

where Gmin is a gain floor introduced in [25] to hide the resid-

ual noise in the enhanced signal. In our experiments we used

the minimum mean-square error (MMSE) log-spectral ampli-

tude (LSA) gain function GH1
(k, ℓ) as defined in [24].

3. Generalized decision directed approach

3.1. Derivation

Motivated by the GSS rule, which is given in [19] as

|Ŝ(k, ℓ)| = ( |Y (k, ℓ)|ρ − E[ |D(k, ℓ)|ρ ] )
1

ρ , (16)

where ρ > 0 is an arbitrary constant. We define the a priori

SNR estimation task in the generalized SNR domain as follows:

estimate the a priori SNR ξ(k, ℓ) from the generalized a poste-

riori SNR

γρ(k, ℓ) =
|Y (k, ℓ)|2ρ

E[|D(k, ℓ)|2ρ]
= ζρ(k, ℓ) + ηρ(k, ℓ), (17)

where the generalized instantaneous SNR and NPR defined as:

ζρ(k, ℓ) ,
|S(k, ℓ)|2ρ

E[|D(k, ℓ)|2ρ]
, (18)

ηρ(k, ℓ) ,
|D(k, ℓ)|2ρ

E[|D(k, ℓ)|2ρ]
. (19)

Under the assumptions made for S(k, ℓ) and D(k, ℓ), the

|S(k, ℓ)|2ρ and |D(k, ℓ)|2ρ are uncorrelated non-stationary



real-valued Weibull-distributed random processes with the

probability density functions (PDF)

p|S(k,ℓ)|2ρ(s) = Weib(s; λS(k, ℓ), ρ), (20)

p|D(k,ℓ)|2ρ(d) = Weib(d; λD(k, ℓ), ρ), (21)

where the Weibull PDF pX(x) = Weib(x; λ, ρ) is defined as:

Weib(x; λ, ρ) ,
1

ρλ
· x

1

ρ
−1 · e−

1

λ
·x

1

ρ

· ǫ(x), (22)

where ρ, λ and ǫ(x) are the shape parameter, the scale parame-

ter and the unit step function, respectively. Note that, for ρ = 1
the generalized SNR becomes the conventional SNR and the

Weibull PDF simplifies to the exponential distribution, often

used to model the conventional SNR quantities.

Using the additivity (1), the PDF of |Y (k, ℓ)|2ρ is given by:

p|Y (k,ℓ)|2ρ(y) = Weib(y; λS(k, ℓ) + λD(k, ℓ), ρ). (23)

From (20), (21) and (23) one can easily obtain the PDFs of

ηρ(k, ℓ), ζρ(k, ℓ) and γρ(k, ℓ) by using the raw moment of κ-th

order of the Weibull-distributed random variable:

E[Xκ] = λ
κ·ρ · Γ(κ · ρ+ 1), (24)

where Γ(x) is the gamma function. From (24) with κ = 1 we

get the following PDFs

p(ηρ) = Weib(ηρ; Γ
−1/ρ(ρ+ 1), ρ), (25)

p(ζρ) = Weib(ζρ; ξ(k, ℓ) · Γ
−1/ρ(ρ+ 1), ρ), (26)

p(γρ) = Weib(γρ; (ξ(k, ℓ) + 1) · Γ−1/ρ(ρ+ 1), ρ). (27)

The a priori SNR ξ(k, ℓ) from (5) appears here as a parameter.

With (17) and (24) one can get the relationship between the

conventional and the generalized a posteriori SNR

γρ(k, ℓ) =
γρ(k, ℓ)

Γ(ρ+ 1)
. (28)

Now we can derive the GDD approach in the generalized

SNR domain in the spirit of the DD approach, again by using

the weighted sum

ξ̂
GDD
ρ (k, ℓ) = αρ · ξ̃ρ(k, ℓ− 1) + (1− αρ) · ξ̂

ML
ρ (k, ℓ), (29)

where αρ is a weighting factor of GDD approach. The first term

ξ̃ρ(k, ℓ−1) =
|Ŝ(k, ℓ)|2ρ

λ
ρ
D(k, ℓ)·Γ(ρ+1)

= G
2ρ
H1
(k, ℓ−1)·γ̂ρ(k, ℓ−1)

(30)

is a generalized propagated a priori SNR estimate defined as a

random variable similar to (8), (13) and (18), and the second

ξ̂
ML
ρ (k, ℓ) = (max( γ̂(k, ℓ)− 1 , 0) )ρ (31)

is a ML estimate of the generalized a priori SNR ξρ(k, ℓ) from

the Weibull distributed observation γρ(k, ℓ) with

ξρ(k, ℓ) = E[ζρ(k, ℓ)] = ξ
ρ(k, ℓ) (32)

defined as a parameter similar to (5) and (10).

In the spirit of the DD approach, the desired a priori SNR

of GDD approach in the PSD domain can be calculated from

ξ̂ρ(k, ℓ) using (32) as follows

ξ̂
GDD(k, ℓ) = max

(

(

ξ̂
GDD
ρ (k, ℓ)

) 1

ρ
, ξmin

)

, (33)

defining the output a priori SNR as a parameter. However, the

output a priori SNR considered as a random variable becomes

ξ̂
GDD(k, ℓ) = max

(

(

ξ̂
GDD
ρ (k, ℓ) · Γ(ρ+ 1)

) 1

ρ
, ξmin

)

. (34)

Note, that for ρ = 1 the equations from (29) to (34) of the pro-

posed GDD approach become the equations from (11) to (14) of

the conventional DD approach. For initialization it is sufficient

to set ξ̂GDD
ρ (k, 1) = (max(γ̂(k, 1)− 1, 0))ρ.

While the GDD approach can use the same parameter ξmin

as the DD approach, the parameters ρ and αρ have to be set

appropriately. To do this and to get a deeper insight in the

behaviour of the proposed GDD approach experiments with

speech signals distorted by the white noise are carried out.

3.2. Parameterization

In our experiments the clean speech signals are generated by

concatenating utterances of different male and female speakers

from the TIMIT database [26], having a total length of 1 minute

each. The white noise signal is taken from the NOISEX-92

database [27] and is added artificially to the clean speech sig-

nals at global SNR values varied from 0 dB to 30 dB in steps

of 10 dB and denoted in the following as Υ. All signals are

sampled at 16 kHz. The STFT spectral analysis used a Hanning

window of 512 samples length with a frame overlap of 25%.

The a posteriori SNR estimates are calculated from the noise

PSD estimates λ̂D(k, ℓ) of the MS approach [2]. The length of

the MS window for minimum search is set to D = U · V = 96
frames divided into U = 8 subwindows of length of V = 12
frames. Further we set ξmin = −25 dB as in [9] and Gmin =
−25 dB as in [24]. In every experiment the parameters of the

GDD approach ρ and αρ are set to constant values from the

ranges of [0.05; 2] and [0; 1], respectively.

Our simulations with white noise have shown, that the opti-

mal weighting factor αopt
ρ (Υ), which maximize the mean opin-

ion score - listening quality objective (MOS-LQO) measure of

the enhanced signal, depends on both the input global SNR Υ
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Figure 1: The MOS-LQO improvement ∆MOS-LQO of the

proposed GDD approach over the DD approach in enhancing

speech signals distorted by white noise at different input global

SNR as a function of ρ: (a) by using (33), (b) by using (34).



and the value of ρ. By averaging over all SNR values a SNR-

independent weighting factor αopt
ρ can be calculated. For ρ = 1

we got αopt
ρ = 0.975, which is very close to the expected 0.98,

since in this case the GDD approach reduces to the DD ap-

proach. While αopt
ρ decreases for ρ < 1, it increases for ρ > 1,

still remaining smaller than 1. Note, smaller values of αρ are

preferable, since they deliver a smaller delay of the a priori

SNR estimates contributing to reduction of reverberation effect.

In Fig. 1, the achievable MOS-LQO improvement of the

proposed GDD approach over the conventional DD approach

∆MOS-LQO = MOS-LQOGDD − MOS-LQODD (35)

averaged over male and female speech signals is depicted as a

function of ρ at different input global SNR either by using (33)

in (a) and by using (34) in (b). As we can see (33) and (34)

show slightly different behaviour.

According to the Fig. 1(a), the GDD approach with (33) and

ρ> 1 achieves a positive MOS-LQO gain for all input global

SNR>0 dB. For the global SNR of 20 dB the MOS-LQO im-

provement is particularly high. The Fig. 1(b) shows that the

MOS-LQO gain of the proposed GDD approach by using (34)

is especially high for the global SNR of 30 dB and for ρ ≈ 0.1.

Here the trajectories of the a priori SNR estimates contain less

fluctuations in speech absence because the estimator works on

highly compressed magnitudes. At the same time the estima-

tor’s tracking ability to the rising and decaying speech power

remains high, since the optimal weighting factor has small val-

ues. Both Figs. 1 (a) and (b) show that for low global SNR of

0 dB ρ = 1 is the best choice for the a priori SNR estimation

which corresponds to the conventional DD approach.

To attain the highest possible MOS-LQO improvement for

arbitrary input global SNR Υ we suggest to adapt ρ for every

frame ℓ using the following estimate of the input global SNR

Υ̂0(ℓ) =
ℓ− 1

ℓ
· Υ̂0(ℓ− 1) +

1

ℓ
·

K
∑

k=1

ξ̂
GDD(k, ℓ), (36)

where K is a number of frequency bins until the Nyquist fre-

quency. For initialization we used Υ̂(1) = 15 dB with the rela-

tion Υ̂ = 10 · log10 Υ̂0.

ρ

Υ[dB]

1

1.5

2

0.1

0.975

0.997

0.998

0.6

0 10 20 30

(33)

(33)

(33) (34)

Figure 2: Used adaptation function ρ(Υ) with corresponding

αopt
ρ values and the applied final GDD equations in parentheses.

In Fig. 2 the chosen adaptation function ρ(Υ) used in our

experiments for adaptation is depicted together with the corre-

sponding values of αopt
ρ and the applied final GDD equations.

4. Experimental results

To investigate the performance of the proposed GDD approach

with the suggested adaptation scheme, we extended our previ-

ous experiments in two aspects. First, we used longer signals of

the TIMIT database with a total length of 3 minutes and, sec-

ond, we additionally employed 14 remaining noise types from
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Figure 3: Overall improvement of the proposed GDD approach

compared to the DD approach in terms of ∆MOS-LQOAVG and

∆SNR-OUTAVG values for NOISEX-92 database.

the NOISEX-92 database listed in the legend of Fig. 3. To show

that the quality improvement of the enhanced signals measured

by ∆MOS-LQO is not achieved at costs of the output global

SNR (SNR-OUT), we calculated the SNR-OUT improvement

of the proposed GDD approach over the DD approach

∆SNR-OUT = SNR-OUTGDD − SNR-OUTDD (37)

averaged over male and female speech signals and mea-

sured in dB. To show the overall improvement, the val-

ues of ∆MOS-LQO and ∆SNR-OUT are additionally aver-

aged over all simulated input global SNR values resulting in

∆MOS-LQOAVG and ∆SNR-OUTAVG values, which are de-

picted in Fig. 3 for all noise types of the NOISEX-92 database.

Our experimental results show, that the proposed GDD ap-

proach compared to the conventional DD approach improves

both the quality and the output global SNR of the processed

signals for almost all considered noise types. Averaged over

all noise types we observed a moderate improvement of speech

quality of ∆MOS-LQO = 0.05 score points (consistent to the

∆MOS-LQO values in Fig. 1) and a remarkable increase in out-

put global SNR of ∆SNR-OUT = 2 dB (i.e. from 18 dB for DD

approach up to 20 dB for the proposed GDD approach for av-

eraged global input SNR of 15 dB). Only for leopard noise an

improvement in the output global SNR of almost 1 dB causes a

slight loss in speech quality of output signals. Note, that the per-

formance improvement comes mostly from signals generated

in the medium to high input global SNR regime. In general it

looks as if the proposed generalization of the conventional DD

approach helps to find a slightly better tradeoff of noise sup-

pression against speech distortion.

5. Conclusions

In this contribution we described a statistical modeling of the

a priori SNR estimation task in the generalized SNR domain de-

fined for an arbitrary power exponent of the spectral magnitude.

We developed a generalized decision directed approach, took

deeper insight in its behaviour and parameterized it for usage in

arbitrary noisy conditions. In the experiments we showed, first,

that the proposed approach is able to improve the performance

of the decision directed approach in high input global SNR and,

second, that the power spectral domain is an optimal choice for

the a priori SNR estimation for low input global SNR.
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