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Abstract
In this paper we show that recently developed algorithms for
unsupervised word segmentation can be a valuable tool for
the documentation of endangered languages. We applied an
unsupervised word segmentation algorithm based on a nested
Pitman-Yor language model to two austronesian languages,
Wooi and Waima’a. The algorithm was then modified and pa-
rameterized to cater the needs of linguists for high precision of
lexical discovery: We obtained a lexicon precision of of 69.2%
and 67.5% for Wooi and Waima’a, respectively, if single-letter
words and words found less than three times were discarded.
A comparison with an English word segmentation task showed
comparable performance, verifying that the assumptions under-
lying the Pitman-Yor language model, the universality of Zipf’s
law and the power of n-gram structures, do also hold for lan-
guages as exotic as Wooi and Waima’a.
Index Terms: unsupervised vocabulary acquisition, unsuper-
vised language acquisition, unsupervised word segmentation

1. Introduction
Linguists estimate that of the approximately 6,500 languages
worldwide, about half of them will have vanished within less
than 100 years [1]. Language documentation efforts, such as the
US National Science Foundation’s Documenting Endangered
Languages Program [2], the Hans Rausing Endangered Lan-
guages Project [3] or the ”Dokumentation bedrohter Sprachen”
(DoBeS) project funded by the Volkswagen foundation [4],
have created large multimedia corpora of many languages to
document what may otherwise be lost forever. Their manual
transcription which is required to conduct phonetic or linguistic
research on them, is a significant challenge, if not the least from
a financial point of view.

Thus the use of speech and language technologies has been
studied for automatic transcription and segmentation [5, 6], and
projects, such as the AUVIS project [7], have been initiated to
bring phonetic and linguistic researchers and natural language
processing (NLP) scientists and engineers together to develop
tools according to the needs of field researchers. CLARIN [8],
the Common Language Resources and Technology Infrastruc-
ture, provides a one-stop access to language resources and tools
to discover, explore, exploit, annotate, analyse or combine digi-
tal language data in written, spoken, video or multimodal form,
for researchers in the humanities or social sciences. Participat-
ing centers are offering access services to data, tools and exper-
tise through this portal.

Many of the languages threatened by extinction are only
spoken and not written. Tools for the discovery of the inventory
of phonemes, the word list and a pronunciation dictionary, are

for the most part not available to linguists todate. These tasks,
however, share similarities with the research objectives of ’zero
resource speech technologies’, a field of research that has found
much attention in recent years due to a large IARPA program
in this field [9]. Lexicon discovery can be viewed as an unsu-
pervised learning problem with an infinite, or at least unknown,
number of items to be learned. Exactly for this task, nonpara-
metric Bayesian methods have proven to be very effective.

Lee and Glass developed a latent variables model for acous-
tic unit discovery, based on a Dirichlet Process (DP) mixture
[10]. With the DP, the number of units need not be specified
in advance and can grow with the data. They showed that the
discovered sub-word units were highly correlated with English
phonemes and the resulting segmentation outperformed other
state-of-the-art methods. A similar statistical model, however
now for input of categorical nature, has been used for the unsu-
pervised segmentation of character sequences into words [11].
The key idea in both cases is that the succession of labels or
speech frames within a word or an acoustic unit is more pre-
dictable than at unit boundaries. We have extended the unsuper-
vised word segmentation algorithm of [11] to cope with noisy,
i.e., error-prone input as received by an ASR decoder, and were
able to discover words and learn a language model and pronun-
ciation lexicon from continuous speech input only [12].

In this paper we report on experiments with word discov-
ery algorithms for two austronesian languages, Wooi [13] and
Waima’a [14]. Wooi is spoken at the western tip of Yapen Is-
land in Indonesia. Approximately 1600 people still speak Wooi.
Waimaa is an endangered Austronesian language from Timor
Lorosa’e (East Timor). The precise extent of the Waimaa speak-
ing area and poulation remain to be determined.

On text corpora from these languages we perform unsuper-
vised word segmentation employing Bayesian language mod-
eling based on the Pitman-Yor process. We experiment with
language model orders and investigate the usefulness of word
length models. Further, we propose a method to tune lexical dis-
covery results towards high precision to cater the needs of lin-
guists. A comparison with an English corpus of similar size, the
Wall Street Journal (WSJ) corpus, yields interesting insights.

The paper is organized as follows. In the next Section we
give a summary of unsupervised word segmentation employing
a Pitman-Yor language model. The datasets are described in
Section 3 and word segmentation experiments are described in
sections 4 and 5, before concluding the paper with Section 6.

2. Unsupervised Discovery of Lexical Units
The task we are facing is as follows: we are given a corpus of
unsegmented character sequences (or any other input of cate-



gorical nature, such as letters or phonemes) and wish to seg-
ment the input into words. This will give us a word list for that
corpus, a first step towards a lexical analysis of the language.

When doing so, we are faced with a chicken-and-egg prob-
lem: we need a word list and a language model (i.e., proba-
bilities of words and word sequences) to do the segmentation.
However, to estimate the language model, we need to have a
segmentation. Before coming back to this problem we first de-
scribe a language model which is able to cope with an unknown
number of words.

2.1. Nested Pitman-Yor Language Model

The statistical model we are going to use to solve the task must
be able to assign a probability to unknown words based on their
spelling and handle an a priori unknown number of already dis-
covered words (e.g. be nonparametric). It must also capture the
only two constraints we impose:

i) The occurrence of the words follow a power law distribution

ii) n-gram structures apply for both, the word, and the charac-
ter level

The first assumption, known by the name Zipf’s law, has shown
to be reasonable for most natural, and artificial languages [15],
and we presume it will also hold for the two exotic languages
we consider here, Wooi and Waima’a. The second one has been
shown to be effective in modeling language data and relies on
the fact, that predictability is the fundamental requirement to
differentiate anything structured from noise.

A model which meets all of these requirements is the
Nested Pitman-Yor Language Model (NPYLM), first intro-
duced in [11]. This model incorporates two hierarchical
Pitman-Yor language models (HPYLM), one for the discovered
words and one for the characters [16].

The HPYLM is based on the Pitman-Yor (PY) process,
which is a generalized Dirichlet process governed by two pa-
rameters – a discount parameter d and a strength parameter θ
– and a base distribution G0, which is defined over a probabil-
ity space X of tokens (words or characters). The drawing pro-
cess for the PY process may be explained through a Chinese-
restaurant analogy: at any time the process has a number of
“tables”, which can grow infinitely large, and each of these ta-
bles has a symbol from X associated with it. A new draw (a
“customer”) is either “seated” at an existing table and assigned
the symbol (word) associated with it, or assigned to a new ta-
ble. When a new table is selected, the symbol assigned to it is
drawn from G0. The overall process results in draws from a
distribution G:

G ∼ PY (d, θ,G0) . (1)

The parameter θ controls how similar this drawn distribution
is to the base distribution which itself can be seen as a mean
distribution of the drawn ones. Draws from the distribution G
obey the power law and hence incorporate the prior knowledge
of Zipf’s law.

The n-gram structure is captured by embedding the above
in a hierarchical structure. At the n-gram level a separate PY
process is instantiated for every (n−1)-word context. The base
distribution for each PY process at the n-gram level is a (n−2)-
context specific PY process. One can view the entire structure
as a tree, where the root node gives the unigram probability, its
children the bigram probability and so forth. This can be inter-
preted as smoothing since a certain amount of the probability
mass is moved to the shorter context. The degree of smoothing

is controlled by the discount parameter d. So instead of one,
there are several distributions, one for each context:

G (u) ∼ PY (d, θ,G (π (u))) . (2)

The notation π (u) describes the shorter context, e.g. if u =
(wi−1, . . . , wi−n+1) then π (u) = (wi−1, . . . , wi−n+2). To
cope with yet unknown words, another tree is built, this time
for the characters, which is used to calculate the likelihood of
the character sequence forming the word to serve as the base
distribution for the word model, resulting in the aforementioned
NPYLM.

The model and its underlying sufficient statistics Σ, also
called “seating arrangement” in the Chinese-restaurant analogy,
are used to calculate the predictive probability of a word w
given its context u:

Pr (w|u) =
cuw· − d|u|tuw
θ|u| + cu··

+
θ|u| + d|u|tu·

θ|u| + cu··
Pr (w|π (u)) (3)

=: Prlocal (w|u) + Pr (FB|u) Pr (w|π (u))

with the obvious definition for Prlocal (w|u) and Pr (FB|u).
Again, a Chinese-restaurant analogy may be used to inter-

pret eq. (3). cuw· describes the counts of word w in the context
u. tuw describes how many ”tables” are occupied by this word.
d|u| and θ|u| are the discount and strength parameters of the
Pitman-Yor process at the context length |u|, which are shared
by all contexts of the same length. The · indicates a marginaliza-
tion, so cu·· =

∑
w cuw· is the count of all words in the context

u. In the generative perspective Pr (FB|u) is the probability for
assigning a new table for a new draw. The parameters d|u|, θ|u|
are sampled after each iteration as is explained in [16].

With the help of eq. (3) we are able to assign a probability
to a given word sequence.

2.2. Unsupervised Word Segmentation

Given the unsegmented character sequence at the input, a seg-
mentation into words can be carried out by an iterative process,
which alternates between drawing a segmentation for a sentence
using the estimated NPYLM to calculate the segmentation like-
lihood and reestimating the language model parameters given
the drawn segmentation. Starting from a random initial seg-
mentation and the language model estimated from it, we choose
a sentence of the corpus at random, remove its contribution to
the word and letter counts and estimate the language model on
the remaining corpus. Then this language model is employed
to draw a new segmentation for that sentence. This can be ef-
ficiently accomplished with the Forward-Filtering Backward-
Sampling algorithm described in [11]. This process is repeated
until a stable segmentation is found.

It has been shown that good segmentation results on both,
character sequences [11, 17] and phoneme sequences [17] can
be achieved with the help of the NPYLM.

3. Datasets
We carried out unsupervised word segmentation experiments on
three corpora:

• The first corpus contains the text prompts of the WSJ-
CAM0 training data, consisting of 5612 sentences with
95442 running words and a lexicon size of 10658 words.
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Figure 1: Word count as a function of rank

The results on this corpus serve as reference results to set
the performance on the austronesian corpora into com-
parison to a well-known database.

• The second corpus contains text transcriptions of 743
recording sessions of the Wooi language. The sessions
are separated into 37028 intonation units, with 123848
running words and a lexicon size of 11512 words.

• The third corpus contains 391 recording sessions of the
Waima’a language. The sessions are separated into
19888 intonation units, with 88751 running words and
a lexicon size of 6535 words.

The three copora are comparable in terms of the number of
words in the running text and the lexicon size. While the WSJ
corpus contains text from newspaper articles, the Wooi and
Waima’a corpus contain spontaneous speech.

Fig. 1 displays the word counts on the three corpora as a
function of the rank of the word in a list ordered according to
word frequency. In the chosen log-log scale adherence to Zipf’s
law can be easily checked. If for the probability of the n-th most
probable word wn it holds that

Pr(wn) ∝ 1

nα
, (4)

the distribution of word probabilities will form a straight line
with slope−α. The WSJ corpus shows a straight line, while the
curves for the Wooi and Waima’a corpus slightly deviate from
a line for the lower ranks. For the higher ranks the lines follow
the power law property. The maximum likelihood estimates of
α are 0.9397 for the WSJ corpus, 0.93696 for the Wooi corpus
and 0.9681 for the Waima’a corpus. These results show that the
assumption of a power law property by the Pitman-Yor language
model holds for English as well as for exotic languages like
Wooi and Waima’a.

4. Word Segmentation Experiments
In a first experiment we applied the word segmentation algo-
rithm to all three corpora and evaluated the quality of the seg-
mentation result for different orders of the character language
model and the word language model. As performance measures
we used the token F-score and the lexicon F-score.

The F-score F is the harmonic mean of the precision P and
the recall R. The precision is defined as the ratio of the number
of correctly found words Ncorrect and the total number of found
words Nfound, while recall is defined as the ratio of the number
of correctly found words Ncorrect and the number of words to be
found Nreference:

F = 2
P ·R
P +R

, P =
Ncorrect

Nfound
, R =

Ncorrect

Nreference
. (5)
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Figure 2: Token and lexicon F-score as function of model order

The token F-score is determined by aligning the segmented se-
quence with the reference sequence, and choosing the align-
ment with the lowest edit distance, allowing deletions, inser-
tions, substitutions and matches. Matches are then counted as
correctly found tokens. For the lexicon F-score a word in the
learned lexicon is counted as correctly found if it is present in
the reference lexicon.

Fig. 2 shows the results for the token and lexicon F-score
as a function of the character language model order when using
a unigram and a bigram word language model. For the unigram
word language model, the F-scores reach their peak at around a
spelling model order of 3. For the bigram word language model,
the F-scores increase with increasing spelling model order, only
for the WSJ corpus the F-score decreases for character language
model orders greater than 8. Increasing the character language
model order further makes no sense since the number of words
of length larger than 8 characters is very small.

The bigram word language model performs better than the
unigram word language model for the WSJ corpus (72.6 %
token and 62.5 % lexicon F-score) and the Waima’a corpus
(72.73 % token, 51.82 % lexicon) corpus. For the Wooi cor-
pus, the peak token F-score for the unigram is at 66.99 % and
for the bigram at 64.85 %. For the lexicon F-score the bigram
word language model performs best, achieving an F-score of
54.01 %. Based on these results we chose a character language
model order of 7 and a word model order of 2, since this setup
gave good results across the three corpora.

In the next set of experiments we experimented with ex-
plicit word length modeling. It has been observed that an n-
gram model at the character level results in inadequately low
probabilities assigned to long words, because the model has
a largely exponential distribution over length [18]. To correct
this, a Poisson distribution of the word length is imposed by
dividing the likelihood of a character sequence of length k,
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Figure 3: Word length distribution for reference and result

P (c1, · · · , ck) at the base distribution, by the probability of a
word length k according to the language model and multiply-
ing it with the probability of a word length k according to the
Poisson distribution [11]:

P (c1, · · · , ck) ← P (c1, · · · , ck)
Pp(k;λ)

P (k)
, (6)

where the Poisson distribution is given by

Pp(k;λ) = e−λ
λk

k!
. (7)

The Poisson parameter λ is estimated after each iteration of the
word segmentation algorithm on the segmentation result.

Fig. 3 shows the distribution of the word length in the ref-
erence corpus and in the segmentation result with length mod-
eling activated. It is striking how well the distribution of the
word lengths of the segmentation result follows the distribu-
tions in the reference corpus. Even the dip at word length 3 in
the Wooi corpus is reflected in the automatically found segmen-
tation! The figure also shows a Poisson distribution fitted to the
word length distribution measured on the reference text, which
resulted in a mean value of 4.9, 4.3 and 3.6 characters per word
for WSJ, Wooi and Waima’a, respectively.

Obviously the Poisson correction has little influence on the
segmentation. This can be seen by the fact, that the distribution
measured on the segmentation result is quite different from a
Poisson distribution. Indeed, the explicit word length correction
of eq. (6) did not improve the segmentation performance.

5. Optimization of Lexicon F-Score
To be a valuable tool for linguists, the lexicon discovered by
the word segmentation algorithm should have both high preci-
sion and high recall. However, a word segmentation algorithm
based on n-gram probabilities cannot be expected to perform

well for words which occur very rarely in the corpus. Errors
will therefore concentrate on infrequent words.

To analyse this effect, we carried out word segmentation
with a bigram word model and a 7-gram character model as
described and, in a postprocessing step, kept only word tokens
that occurred at least a given count in the segmentation result.
Table 1 shows the effect of discarding infrequent words on the
token and lexicon F-score.

Table 1: F-scores of the different setups

WSJ Wooi Waima’a
Count Token Lex. Token Lex. Token Lex.

1 69.6 61.8 64.8 52.0 73.6 51.0
2 71.6 69.7 65.6 59.8 74.8 63.9
3 72.3 76.4 66.2 64.4 75.2 68.1

3/2 76.9 76.5 67.8 64.3 76.8 68.1

If only those words with a count of at least 1, 2 or 3 were
kept in the segmentation result and the reference, F-scores at
lexicon level rose significantly. Since infrequent words do not
occur often in the segmentation, the token F-score is not greatly
influenced. Discarding words with higher counts did not im-
prove the results significantly but discarded too many words.
In the table, the row with the first entry being 3/2 means, that
only those words with a count of at least 3 and additionally with
a length of at least 2 characters were kept. As can be seen,
discarding single-character words did slightly improve the seg-
mentation result. Discarding longer words decreased the scores.
Table 2 shows the resulting precisions as well as the number of
found words Nf and remaining words Nr for the last setup.

Table 2: Precisions and remaining words of 3/2 setup

WSJ Wooi Waima’a
Token Lex. Token Lex. Token Lex.

P 81.1 75.7 64.7 69.2 78.1 67.5
Nr 75204 4037 119225 4066 79663 2364
Nf 92561 11070 139718 8641 87927 5783

With such a parameterization the presented word segmen-
tation can serve as a handwork saving preprocessing tool for
linguists: while the algorithm takes care of all frequent words
and thus most of the text, linguists can concentrate on infrequent
words to complete the lexicon.

6. Conclusions
In this paper we have shown that unsupervised word segmen-
tation based on a nested Pitman-Yor language model can be a
valuable tool for linguistic analysis, adding to the set of natu-
ral language processing tools to discover, annotate, analyse or
combine digital language data. On the austronesian languages
Wooi and Waima’a we have achieved segmentation results that
are comparable to those obtained on a well-known English cor-
pus, demonstrating the universality of unsupervised learning ap-
proaches to language processing. We have also shown that sig-
nificantly higher F-scores are obtained on frequent compared to
infrequent words, leading to the conclusion, that the proposed
algorithm can be used as a preprocessing tool, which saves,
however, not frees linguists from manual effort.
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