
Noname manuscript No.
(will be inserted by the editor)

Autonomous Learning of Representations

Oliver Walter · Reinhold Haeb-Umbach · Bassam Mokbel · Benjamin

Paassen · Barbara Hammer

Received: date / Accepted: date

Abstract Besides the core learning algorithm itself,

one major question in machine learning is how to best

encode given training data such that the learning tech-

nology can efficiently learn based thereon and gener-

alize to novel data. While classical approaches often

rely on a hand coded data representation, the topic of

autonomous representation or feature learning plays a

major role in modern learning architectures. The goal

of this contribution is to give an overview about dif-

ferent principles of autonomous feature learning, and

to exemplify two principles based on two recent exam-

ples: autonomous metric learning for sequences, and au-

tonomous learning of a deep representation for spoken

language, respectively.

Keywords Representation learning · Metric learning ·
Deep representation · Spoken language

The work was in part supported by Deutsche Forschungs-
gemeinschaft under contract no. Ha 3455/9-1 and no.
Ha 2719/6-1 within the Priority Program SPP1527 ”Au-
tonomous Learning”.

Oliver Walter, Reinhold Haeb-Umbach
Universitaet Paderborn
Fachgebiet Nachrichtentechnik
Warburger Str. 100
33098 Paderborn
Tel.: +49-5251-603625
Fax: +49-5251-603627
E-mail: {walter,haeb}@nt.uni-paderborn.de

Bassam Mokbel, Benjamin Paassen, Barbara Hammer
Universität Bielefeld
CITEC centre of excellence
D-33594 Bielefeld
Tel.: +49 521 / 106 12115
Fax: +49 521 / 106 12181
E-mail: {bmokbel,bpaassen,bhammer}@techfak.uni-
bielefeld.de

1 Introduction

The ability of animate beings to autonomously learn

complex models and nontrivial behaviour based on ex-

amples only has fascinated researchers right from the

beginnings of machine learning and artificial intelligence.

One of the striking observations which contributed to

the success of early learning models such as the percep-

tron consisted in the fact that simple, biologically plau-

sible principles such as Hebbian learning enable systems

to provably infer a correct model from given data only.

The question how neural networks internally represent

these data has been a central issue: the perceptron rep-

resents information in a distributed way by encoding

relevant aspects in the weights, rather than an explicit

symbolic modelling. This enables a high error tolerance,

taking into account multiple aspects of the data. How-

ever, the fact that the mere perceptron has very limited

representation capabilities, it can represent linearly sep-

arable data only, has severely contributed to its aban-

doning around 1970. Back-propagation, by providing an

efficient mechanism to learn a suitable distributed rep-

resentation of data in one or more hidden layers, caused

a neural renaissance around 1986 [57]. Multilayer net-

works enable a very rich internal representation, but

sometimes at the costs of difficult optimisation prob-

lems for neural network training.

Interestingly, this training complexity, among other

problems, accounted for the fact that the last decades

have been dominated by powerful models such as the

support vector machine (SVM) which is, essentially, a

generalized linear map: the perceptron is enhanced by

a kernel, i.e. an implicit fixed nonlinear preprocessing

[12]. This avoids cumbersome training with local op-

tima and numerical problems, since it enables a for-

malization of model optimization in terms of convex

2 Oliver Walter et al.

quadratic programming. This approach is very success-

ful because universal kernels exist for standard vectorial

data [48,21]; still, the choice of a suitable kernel and its

parametrization for a given task can be tricky – even

more so, if data are complex such as non-vectorial or

symbolic data [37]. The idea of a kernel representation

can be put into a line with the recent success of extreme

learning or reservoir computing [16,29,36]. In their orig-

inal form, these approaches, albeit yielding remarkable

results, rely on a priorly fixed, albeit usually rich choice

of a suitable data representation.

A kernel representation or nonlinear preprocessing

enables highly nonlinear models as compared to the

simple perceptron – still such representation has to be

designed by humans, who often rely on rich universal

representations such as Gaussian kernels or even ran-

dom mapping rather than representations tailored for

the problem at hand. Domain specific invariances such

as e.g. different lightning conditions for image recogni-

tion tasks or auxiliary semantic information are usually

not taken into account in this universal representation.

Since about 2006, deep neural networks with mul-

tiple stacked hidden layers started another renaissance

of highly nonlinear data representation tailored for a

specific domain under the umbrella term ‘deep learn-

ing’ [27,6]. Essentially, deep learning refers to stacked

nonlinear models such as neural networks or probabilis-

tic counterparts which are characterized by a high de-

gree of nonlinearity due to the hierarchical composition

of a large number of nonlinear elements, and all ele-

ments are adaptive. It has been known since a while

that such stacked systems have beneficial mathemati-

cal properties as concerns their representation ability [9,

24], however, efficient training of deep networks has long

constituted a problem [7]. Novel training paradigms

such as efficient unsupervised pre-training of architec-

tures with restricted Boltzmann machines as well as

a high degree of architectural regularization have re-

cently turned such networks into efficient models. In-

terestingly, these models often automatically arrive at

powerful internal representations of information within

hidden layers, where relevant characteristics such as in-

variance against certain changes can be inferred based

on the given data only [6,38].

Still, the autonomous inference of a rich data rep-

resentation which facilitates the design of learning sys-

tems constitutes one of the central questions in machine

learning. In this contribution, we will give an overview

about a number of different approaches for autonomous

feature learning in the context of supervised machine

learning tasks (as opposed to reinforcement learning,

which is addressed in the contribution from W. Böhmer

et al. in this volume). Afterwards, we will address two

specific approaches which accompany two relevant ap-

plication scenarios: (1) How to autonomously adjust

the metric in distance based approaches if non-vectorial

data, in this case sequences, are present? An approach

which extends metric learning to this setting will be

presented. (2) How to infer a deep hierarchical model

to represent spoken language in the case that the ba-

sic constituents such as words and phonemes are not

known? We show how a Bayesian formalisation of the

hierarchical concept enables the unsupervised inference

of entities such as words from raw data.

2 Representation learning

There exists a variety of different principles based on

which a suitable feature representation can be extracted

from given data. The article [6] provides a recent review

of different principles of representation learning; it sum-

marizes diverse technologies such as the following:

(1) Deep learning has its counterparts in biologi-

cal systems [34,6,27,37]; deep learning essentially pro-

cesses signals by means of stacked, highly regular, non-

linear transformations, which are trained to optimally

represent given data sets. It turns out that the architec-

tural constraints often enable the autonomous learning

of invariances such as rotation or translation invariance

and robustness to partial occlusion and lightning con-

ditions for image recognition. Deep learning requires a

sufficient number of training data, and training can be

quite time consuming due to the underlying complex

architectures.

(2) Sparse coding aims at efficient, meaningful rep-

resentations of high dimensional signals relying on the

natural bias of sparsity [28,14,1]; this principle make

use of the fact that many real valued signals can be rep-

resented as linear combination of few basic motifs, such

as sound which can be decomposed into a sparse combi-

nation of oscillations. Sparse coding provides means to

find a sparse decomposition of given signals, if existing,

and to learn suitable dictionaries from observed data.

Naturally, the technique is restricted to settings where

such sparse approximations exist.

(3) Nonlinear dimensionality reduction formalizes

the aim to represent high dimensional signals efficiently

in low dimensions relying on different invariances, such

as metric preservation, preservation of the probabil-

ity distribution, etc. [52,18]; dimensionality reduction

plays a role as soon as data are visualized, since this

requires an embedding of data in two or three dimen-

sions. The challenge is to unravel characteristics from

the data, i.e. to find a low-dimensional representation

which is still meaningful. Since this problem is ill-posed

unless data are intrinsically low-dimensional itself, one

Autonomous Learning of Representations 3

of the challenges of dimensionality reduction is to find

suitable regularizations for the projection; at present,

no clear guidelines which dimensionality reduction tech-

nique is suitable for which data set and task exist.

(4) Highly regularized signal extraction technologies

such as slow feature analysis (SFA) for the autonomous

extraction of meaningful semantic entities from tempo-

ral data [58], or independent component analysis (ICA)

for the extraction of independent semantically meaning-

ful sources from mixed data [30]; both techniques put

a suitable prior to the data to solve an otherwise ill-

posed problem. These priors seem particularly suitable

for some type of real-world data, such as the analysis

of brain signals.

Besides their different objectives and application sce-

narios, these principles can be stratified according to

different fundamental criteria, such as the following:

– Are the techniques supervised, taking into account

label information for a classification task or simi-

lar, or unsupervised? Unsupervised techniques have

the benefit that their results are often more general,

i.e. they generate codes which can be transferred

across tasks within the same domain. One interest-

ing example for this principle are generative models

such as hierarchical restricted Boltzmann machines,

which can be used as excellent dimensionality re-

duction techniques e.g. for the visual domain [6,27].

On the contrary, supervised approaches guarantee

that the information which is used to represent the

data is relevant for the task, suppressing irrelevant

aspects and noise. This is particularly relevant if

only few data points are available since the problem

would be ill-defined without shaping it according to

such auxiliary knowledge [19].

– Are the techniques linear or nonlinear; the latter can

further be differentiated according to the degree of

nonlinearity, ranging from generalized linear mod-

els such as kernel mappings up to deep or hierarchi-

cal models. Linear techniques have the benefit of a

better efficiency, interpretability, and generalization

ability; deep models, on the contrary, can easily rep-

resent topologically complex manifolds such as arise

due to complex invariances in the data, for example.

Interestingly, stacking networks of similar shape and

parameterization leads to topological objects which

resemble a fractal nature and self-similarity, a prin-

ciple which is well known in the context of recurrent

networks [51].

– Which type of data can the techniques deal with?

Which type of representation is extracted? So far,

most methods deal with vectorial signals or time se-

ries for both, input data and learned representation.

Only few approaches address a richer representation

or more complex data structures auch as discrete se-

quences or graph structures [37].

– What is the degree of autonomy for representation

learning? How much training data, user interaction,

and prior knowledge in terms of a Bayesian prior

or the specification of an exact objective are re-

quired? Some popular representation learning tech-

niques are fully unsupervised e.g. aiming for the

most likely data representation in a probabilistic

treatment such as present for deep belief networks;

these methods usually require lots of given data to

extract meaningful regularities. Alternatively, some

approaches are fully supervised and coupled to a

concrete learning task, such as feature selection for

classification. Methods which display a certain de-

gree of autonomy, which require neither big data

sets nor supervised objectives, often rely on inge-

nious mathematical realizations of what can be seen

as natural priors, such as e.g. the slowness princi-

ple in slow feature analysis, sparsity in data rep-

resentation, or independence of signals in indepen-

dent component analysis [58,30,28,14,1]. These pri-

ors are hand designed, and hardly any techniques

exist to autonomously infer natural priors from an

interaction with the environment.

3 Metric learning for sequential data

Metric learning essentially deals with the question of

how to choose a metric in popular distance-based ma-

chine learning technologies such as k-nearest neighbor

classifiers in an optimum way. Since an adaptation of

the metric used for pairwise data comparison directly
corresponds to a transformation of the data space, met-

ric learning can be seen as one instance of representa-

tion learning. Since about 2000, metric learning rapidly

advanced along different lines of research and, currently,

can be considered a matured field of research for the

vectorial case as summarized e.g. in the overview ar-

ticles [35,5]. Two of the earliest approaches introduce

metric learning in prototype based methods: an enrich-

ment of the unsupervised self-organizing map by a met-

ric adjusted according to auxiliary information [32], and

an enhancement of learning vector quanitzation to a

general quadratic form which is autonomously adapted

according to the classification task at hand [23]. While

the former relies on the local Fisher metric and hence

displays a rich capacity but also very high computa-

tional complexity, the latter restricts to a simple pa-

rameterized quadratic form. Interestingly, it can easily

be generalized to local metrics, i.e. a globally nonlinear

forms, and it can be accompanied by strong learning

theoretical guarantees [43].

4 Oliver Walter et al.

Due to its computational simplicity, quite a few tech-

niques of how to adapt quadratic forms have been pro-

posed in the literature afterwards; a few popular ones

include the following: The approaches [59,45] rely on

side information for clustering which specifies sets of

data assigned to the same cluster. Then efficient adap-

tation mechanisms which realise these constraints by an

adjustment of a quadratic form can be derived. Popu-

lar metric learners which are based on the classification

error of a k nearest neighbor classifier have been pro-

posed in the approaches [56,20]. A proposal which cou-

ples metric learning to the observed regression error has

recently been published in the article [2]. Besides com-

putational efficiency, the latter can also be accompa-

nied by formal guarantees. Similar learning theoretical

guarantees are available for metric learning within the

family of vector quantization techniques [43]. Besides

the local metric learning techniques as proposed in this

approach [43], quite a few metric learning techniques

lend itself towards kernelization, resulting in globally

nonlinear data transformations [5].

While advancing the question of how to autono-

mously determine a good data representation in the

context of diverse side information, these approaches

have in common that they are restricted to vectorial

data, i.e. restricted application scenarios only. First tech-

niques extend these methods to richer data structures,

in particular strings, sequences, and trees. A few pro-

posals in this frame are covered in the publications [46,

3,8,5]. These techniques often rely on a generative ap-

proach and determine metric parameters by a data like-

lihood optimization. Hence they are restricted to learn-

ing from positive examples only, not taking into account

prior labels or dissimilar pairs. Exceptions are the pro-

posals [3,4,40] which refer to a regression task similar

to [2] or a classification task similar to [43], respectively.

In the following, we will focus on the latter approach

which has been developed within the frame of the pri-

ority program ‘Autonomous Learning ’ of the DFG.

Essentially, it introduces a framework for autonomous

metric learning for sequence data in the context of pro-

totype based classification. As an alternative, it would

be possible to test the approach [4] for sequence metric

adaptation for classification, which is based on a for-

mal notion which quantifies that the neighbors of the

given data points are, on average, good as regards the

relevant classification, a setting which is particularly

suited for a k-nearest neighbor classifier or a represen-

tation of sequential data in terms of distances to a set

of landmarks. Here, we will focus on a prototype-based

representation instead.

3.1 Relational LVQ for sequence data

Learning vector quantization (LVQ) refers to a family of

intuitive classification schemes, which have recently at-

tracted increased attention in particular in the context

of interpretable models e.g. in biomedical data analy-

sis, on the one side, and life-long learning, on the other

side [42,10,17,13,33,60]. This is caused by the fact that

LVQ inherently relies on a representation of the model

in terms of typical prototypes such that an intutitive

model inspection as well as a compact data descrip-

tion is delivered by the technique; when referring to

a probabilistic formalization of LVQ techniques, this

corresponds to data being represented by a mixture of

Gaussians – however, unlike classical Gaussian mixture

models, the parameters are optimized according to the

conditional likelihood of the output label rather than

the data itself [44]. Deterministic counterparts such as

generalized LVQ (GLVQ) can be designed in such a way

that they additionally focus on a good generalization

ability in terms of margin maximization.

These approaches have recently been generalized to

nonvectorial data structures which are described in terms

of pairwise similarities or dissimilarities only, see the ar-

ticle [22] for a general framework. Here, we will exem-

plarily focus on only one possibility, relational GLVQ

(RGLVQ). RGLVQ relies on training data which are

characterized by pairwise dissimilarities dij only, where

i, j ∈ {1, . . . , n}. These measurements could be the re-

sult of an edit distance of sequence data, an alignment

for DNA or protein sequences, or pairwise graph dis-

tances, for example, depending on the area of appli-

cation. RGLVQ relies on the assumption of symmetry

dij = dji and zero diagonal dii = 0. In such cases,
there always exists a vectorial embedding of the data

such that these distances are induced by a symmetric

quadratic form, which is not necessarily positive defi-

nite, i.e. a so-called pseudo-euclidean space is present

[43]. Within this space, vectorial operations are possi-

ble, i.e. we can represent data by vectors xi and dis-

tances by a quadratic form dij = d(xi,xj). Assume

data xi are labeled c(xi). Then, a protoype-based clas-

sification model in pseudo-euclidean space is given by

representative positions w1, . . . , wk with labels c(wj).

It induces the classification

x 7→ c(wj) where d(x,wj) is minimum (1)

of a given point x (where we refer to its position in the

pseudo-euclidean embedding). The aim of a prototype-

based classifier is the minimization of the classification

error, i.e. the term
∑
iH(d+(xi) − d−(xi)) where H

refers to the Heaviside function, d+ to the distance of xi
from the closest prototype with correct label, and d− to

Autonomous Learning of Representations 5

the distance from the closest prototype with incorrect

label. Since an optimization of the classification error

itself is NP hard, GLVQ resorts to an approximation∑
i

Φ

(
d+(xi)− d−(xi)

d+(xi) + d−(xi)

)
(2)

Here, the sigmoidal function Φ is used as approxima-

tion for H. In addition, since this form would yield to

divergence due to its summands being unlimited, a nor-

malization of the summands by the sum of distances is

introduced. It can be shown that this term relates to the

hypothesis margin of a classifier, i.e. its minimization

accounts for a robust result [43].

This model, however, refers to an explicit pseudo-

euclidean embedding of data, which is usually not pre-

sent. Rather data are characterized by the terms dij ,

resulting in the distance matrix D of pairwise distances

only. It is always possible to compute an explicit pseudo-

euclidean embedding fromD, but at cubic costs. RGLVQ

offers a way to avoid this explicit embedding, resulting

in an equivalent formalization at quadratic costs only.

For this purpose, prototype locations are restricted to

linear combinations of the form

wj =
∑

αjixi with
∑
i

αji = 1 (3)

Based on this assumption, pairwise distances can be

expressed as

d(xi,wj) = [Dαj]i −
1

2
· αtjDαj (4)

where αj = (αj1, . . . , αjn). This results in the costs∑
i

Φ

(
d(xi,w

+)− d(xi,w
−)

d(xi,w+) + d(xi,w−)

)
(5)

with

d(xi,w
±) = [Dα±]i −

1

2
· (α±)tDα± (6)

These costs do no longer depend on an explicit vecto-

rial embedding. Hence this formalization allows an opti-

mization of prototype parameters αj based on D only.

Typically, gradient techniques are used in this frame.

See the publication [22] for details.

3.2 Autonomous adaptation of sequence metrics

within LVQ

While resulting in an efficient classifier for dissimilar-

ity data, the accuracy crucially depends on the quality

of the chosen dissimilarity measure and its parameteri-

zation. Autonomous metric learning in parallel to pro-

totype adaptation has proved a central ingredient of

state-of-the-art LVQ techniques for vectorial data; in

the following, we briefly discuss how this principle can

be transferred to discrete symbolic data, i.e. relational

LVQ as well. We assume that sequential data are given,

i.e. data have the form Y = y1, . . . , yK with length K

and entries yl in some suitable data space Σ, e.g. a real-

vector space for sensor signals or a discrete alphabet for

bioinformatics sequences.

The alignment distance constitutes one of the most

common measures to compare two such sequences with

possibly different length: An alignment of two sequences

Y and Z is an extension of these two sequences by gaps,

referenced by −, such that the resulting sequences Y∗

and Z∗ have the same length. Having fixed a dissimi-

larity measure of how to compare sequence entries en-

riched by the symbol −

dλ : (Σ ∪ {−})× (Σ ∪ {−})→ R (7)

which may depend on parameters λ, two aligned se-

quences Y∗ and Z∗ can easily be compared by sum-

ming the distances of all sequence entries y∗i and z∗i .

The alignment distance d∗(Y,Z) of two sequences is

then defined as the minimum distance of all possible

alignments of these sequences.

Usually, the outcome crucially depends on the pa-

rameterization λ. Similar to the vectorial case, the opti-

mization of the prototypes in the costs 5 can be accom-

panied by an adaptation of the parameters λ: the basic

idea is to optimize these parameters simultaneously to

the model parameters αjl by means of a gradient tech-

nique. Hence autonomous metric learning boils down to

the question of how to efficiently compute derivatives of

the alignment distance with respect to its basic param-

eters λ. In general, this is not possible since the align-

ment distance is discontinuous, hence a derivative does

not exist. It has been proposed in the recent work [40] to

use an efficient approximation of a dynamic program-

ming scheme, instead, as follows: an optimum alignment

can easily be computed based on the Bellman optimal-

ity principle by dynamic programming, resulting in the

central recursion formula

d∗(Y(0),Z(0)) = 0 , (8)

d∗(Y(0),Z(J)) =

J∑
j=1

dλ(−, zj) ,

d∗(Y(I),Z(0)) =

I∑
i=1

dλ(yi,−) ,

6 Oliver Walter et al.

d∗(Y(I + 1),Z(J + 1)) =

min
{
d∗(Y(I),Z(J)) + dλ(yI+1, zJ+1),

d∗(Y(I + 1),Z(J)) + dλ(−, zJ+1),

d∗(Y(I),Z(J + 1)) + dλ(yI+1,−)
}
.

where Y(I) and Z(J)refers to the first I orJ entries of

the sequence Y or Z. The latter three choices refer to

an optimal alignment by one of the three possibilities, a

match of the last sequence entries, an insert or a delete.

This recursion formula can be computed in quadratic

time. When we substitute the discrete operator min by

the smooth function

softmin(x1, x2, x3) =
∑
i

xi
exp(−βxi)∑
j exp(−βxj)

(9)

with β > 0, we arrive at an approximation which allows

us to compute the derivative of the alignment distance

by means of exactly the same Bellmann principle in

quadratic time. This can easily be inserted into a gra-

dient scheme for the costs 5. See [40] for details.

3.3 Experiments

We shortly elucidate the results obtained by autonomous

structure metric learning for sequences in two impor-

tant cases: a discrete symbol alphabet and continuous

sequence entries. For this purpose, we consider the fol-

lowing two data sets:

e d c b a = A B C D E−

e

d

c

b

a

=

A

B

C

D

E

−
0.00

0.25

0.50

0.75

1.00

e d c b a = A B C D E−

e

d

c

b

a

=

A

B

C

D

E

−
0.00

0.25

0.50

0.75

1.00

Fig. 1 Left: prior scoring matrix used for sequence compar-
ison; right: posterior scoring matrix optimized according to
the given classification task.

Copenhagen Chromosomes:

The data set consists of images of two different chomo-

somes which are encoded by the differential change of

the thickness of the silhouette. The differences are en-

coded via the discrete alphabet Σ = {f, . . . , a,=, A, . . .,

F}, with lower / upper cases encoding negative / posi-

tive changes, respectively. Hence every data point cor-

responds to a sequence with entries in the discrete al-

phabet Σ.

A comparison of such sequences depends on the lo-

cal scoring matrix which compares these letters, i.e. a

scoring matrix of size (|Σ ∪ {−}|)2 which indicates the

costs of substituting one symbol by another (or a gap).

This matrix is assumed to be symmetric to account

for symmetric dissimilarities D. A reasonable prior as-

sumption is to put a larger weight on large changes

within the alphabet, taking into account the differen-

tial encoding of the thickness, as shown in Fig.1(left).

However, it is not clear whether such prior weighting is

optimal for the task.

Online learning of these scores confirms a prior which

assigns higher scores to off-diagonals, however a more

subtle structure is obtained, see Fig.1(right). The ob-

tained structure is almost independent of the initializa-

tion of the scoring matrix. The accuracy obtained when

adapting the scoring matrix in addition to the proto-

types is presented in Fig.2(top) when initializing scores

with the unit matrix and Fig.2(bottom) when initial-

izing with a diagonal weight prior. In both cases, the

obtained accuracy approaches 0.95 in a cross-validation.

Interestingly, albeit the diagonal weight prior is closer

in characteristics to the learned scoring metric than the

unit matrix, the latter displays a higher accuracy. This

clearly demonstrates the potential of an autonomous

metric learning which can take into account subtle dif-

ferences indicated by the data. See [40] for details as

regards the training set and parameters of the algo-

rithm.

Java programs:

The data set consists of java code corresponding to im-

plementations of sorting programs according to the two

different strategies Bubblesort and Insertionsort (pro-

grams are taken from the internet). Programs are rep-

resented as sequences as follows: the Oracle Java Com-

piler API transforms every program into a syntax tree

where every node is described by a number of charac-

teristics (such as return type, type, or scope). These

trees are transferred to sequences by prefix notation.

An alignment distance can be rooted in a pairwise

comparison of entries which essentially, for every char-

acteristics, tests a match versus mismatch. The chal-

lenge is then how to weight the relevance of these single

characteristics; a good prior is to use a uniform weight-

ing of every component. In general, a weighted distance

measure which assigns the weight λl to the similarity of

the lth characteristic of a node is taken. Metric learn-

ing enables an automated adaptation of these weighting

terms λl. The result of such relevance learning is de-

picted in Fig.4 for the sorting data set (see [40] for de-

tails of the setup). Interestingly, the relevance weighting

Autonomous Learning of Representations 7

init 1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

Training epochs

A
c
c
u

ra
c
y

Avg. Test (Adaptive λ)

Std. Test (Adaptive λ)

Avg. Test (Fixed λ)

init 1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

Training epochs

A
c
c
u

ra
c
y

Avg. Test (Adaptive λ)

Std. Test (Adaptive λ)

Avg. Test (Fixed λ)

Fig. 2 Accuracy of the chromosome data set with matrix
learning when initializing with default values (top) or a band-
pattern (bottom).

emphasizes the relevance of a node type as compared

to e.g. code position, the latter being not useful for

a class discrimination. The classification accuracy can

be improved to an average .8 when using the adapted

metric (see Fig.3). The metric adaptation corresponds

to a different data representation, as can be seen in

Fig.5. While classes overlap for the default weighting

which assignes the same relevance to every node entry,

a task-adapted relevance weighting clearly emphasizes

class-separability.

init 1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

Training epochs

A
c
c
u

ra
c
y

Avg. Test (Adaptive weights g)

Std. Test (Adaptive weights g)

Avg. Test (Fixed weights g)

Fig. 3 Accuracy on the sorting data set for an adapted struc-
ture metric obtained via cross-validation.

3.4 Software

An efficient realization of differentiable approximations

of local and global alignment distances as well as their

derivatives and diverse visual inspection technology can

be found at http://openresearch.cit-ec.de/projects/tcs.

These metrics can directly be plugged into relational

LVQ, see e.g. http://www.techfak.uni-bielefeld.de/∼xzhu

/ijcnn14 tutorial.html

3.5 Outlook

We have discussed that the principle of metric learn-

ing can be transferred to structured data such as se-

quences, by means of a seamless integration of relational

LVQ and gradient based schemes for the optimization of

metric and prototype parameters. While the results are

very promising, the approach suffers from a high com-

putational load: the full dissimilarity matrix D has to

be computed after every optimization step. In [40], di-

verse approximation schemes have been proposed, how-

ever, it might be worthwhile to also think about an

alternative characterization of the distance measure in

terms of a linear combination of dissimilarity matrices,

for example.

4 Representation learning from sequential data

Conventional automatic speech recognition (ASR) sys-

tems rely on supervised learning, where an acoustic

model is trained from transcribed speech, and a lan-

guage model, i.e., the a priori probabilities of the words,

from large text corpora. Both, the inventory of word,

i.e., the vocabulary, and the inventory of phonemes are

fixed and known. Furthermore, a lexicon is given which

contains for each word its pronunciation in terms of a

phoneme sequence.

Here we consider an unsupervised setting, where

neither the pronunciation lexicon nor the vocabulary

and the phoneme inventory are known in advance, and

0 0.1 0.2

scope

codePosition

name

externalDependencies

parent

className

type

returnType

Fig. 4 Relevance weights learned for the weighting of the
node entries.

8 Oliver Walter et al.

bubble

insertion

bubble

insertion

Fig. 5 t-SNE projection of the data based on the standard alignment distance (left) and the adapted metric (right).

TURN ON LIGHTTHE

Phonemes

Words

Audio Signal

... ...
T ER N OH N DH AX L AY T

Fig. 6 Hierarchical representation of a speech signal

the acoustic training data come without labels. Refer-

ring to the hierarchical nature of speech, we are there-

fore concerned with the task of unsupervised learning of

a deep representation from sensory input, the discovery

of the phonetic and lexical inventory.

For speech recognition, an audio recording is typi-

cally represented as a time series of real valued vectors

of frequency or cepstral coefficients. A symbolic repre-

sentation is learned by discovering repeated sequences

of vectors and assigning the same labels to similar se-

quences. On this label sequence again similar sequences

can be discovered and given labels from another label

set, thus arriving at representations at different levels

of hierarchy. Figure 6 shows an example of a two level

hierarchical representation of a speech signal.

On the first hierarchical level the aim is to discover

the acoustic building blocks of speech, the phonemes,

and to learn a statistical model for each of them, the

acoustic model [11,55,53,47]. In speech recognition, the

acoustic model usually consists of Hidden Markov Mod-

els (HMMs), where each HMM emits a time series of

vectors of cepstral coefficients.

The second level is targeted at the discovery of the

lexical units, the words, and learning their probabili-

G W Y X

Lexicon Acoustic modelPitman-Yor process

Fig. 7 Graphical model with random variables dependen-
cies for the language Model G, words W, phonemes Y and
acoustic feature vectors X. The shaded circle denotes the ob-
servations, solid lines probabilistic dependencies and dashed
lines deterministic dependencies.

ties, the language model, from the phoneme sequences

of the first level [54,41,25,26,39]. In speech recognition,

the mapping of words to phoneme sequences is typi-

cally determined by a pronunication lexicon. So called

n-gram language models are used to calculate the prob-
abilities of words, depending on their context, which is

given by the n−1 preceding words. They usually consist

of categorical distributions over words for each context.

Figure 7 shows a graphical model for the dependen-

cies between the random variables. The language Model

G and the lexicon are generated from a prior process,

the Pitman-Yor process. Then words W are generated

using the language model and mapped to phonemes Y

using the lexicon. Acoustic feature vectors X are finally

generated employing an acoustic model.

In this article we will focus on the autonomous learn-

ing of representations on the second level, the discovery

of words from phoneme sequences, where the phoneme

sequences have been generated by a phoneme recognizer

in a supervised fashion, i.e. by the recognition of the

speech signal, assuming the phoneme set and acoustic

models for each of the phonemes to be known.

Since phoneme recognition from recordings of con-

tinuous speech is a difficult task, even if the phoneme

inventory is known and their models are trained in ad-

Autonomous Learning of Representations 9

vance, the recognized phoneme sequences will be error-

prone. To cater for recognition errors we are going to

operate on phoneme lattices. A phoneme lattice is a di-

rected acyclic graph, which contains not only a single

recgonized phoneme sequence, but also alternatiaves, in

the hope that the correct phoneme sequence is among

them. Standard ASR phoneme recognizers are able to

output a phoneme lattice together with probabilities for

each phoneme in the lattice.

4.1 Word recognition from sequential data

We first consider a supervised scenario, where the pro-

nuncation lexicon and the language model are known.

The objective of word recognition, given a phoneme

sequence Y = y1, . . . , yK of length K, is to segment

the phoneme sequence into the most probable word se-

quence:

Ŵ = arg max
W

P (W|Y) = arg max
W

P (Y|W)P (W),

(10)

where both Ŵ = ŵ1, . . . , ŵL, the identity of the words,

and the number L of words in the sequence are deter-

mined in the course of the maximization. Here P (Y|W)

is given by the lexicon and equals one if the character

sequence Y is a concatenation of the words in W, and

zero else. The probability of a word sequence is calcu-

lated employing an n-gram language model, with

P (W) ≈
L∏
l=1

P (wl|wl−1, . . . wl−n+1) =:

L∏
l=1

P (wl|u).

(11)

Here, P (wl|u) is the probability of the l-th word wl,

given its context u = wl−1, . . . wl−n+1. It can be esti-

mated on training data. In Bayesian language modeling,

additionally a prior probability is incorporated.

4.2 Unsupervised learning from sequential data

We now turn to the case where neither the pronunci-

ation lexicon nor the language model are known, and

where we are still left with the task to segment a phoneme

string into the most probable word sequence. Here we

have to learn the language model together with the

words. We use the nested hierarchical Pitman-Yor lan-

guage model (NHPYLM), denoted by G, which is a

Bayesian language model and allows new, previously

unseen words, to evolve and assigns probabilities to

them. It is based on the Pitman-Yor process prior, which

produces power-law distributions that resemble the sta-

tistics found in natural languages [49,50,39].

An n-gram language model Gu is a categorical dis-

tribution of probabilities for the N words of the vocab-

ulary: Gu = {P (w1|u), . . . , P (wN |u)}. In a hierarchical

Pitman-Yor process, Gu is modeled as a draw

Gu ∼ PY (d|u|, θ|u|, Gπ(u)) (12)

from a Pitman-Yor process with base measure Gπ(u),

strength parameter d|u| and discount parameter Θ|u|
[50]. The base measure corresponds to the expected

probability distribution of the draws and is set to the

language model Gπ(u) of the parent (n− 1)-gram. This

process is repeated until the parent LM is a zerogram.

Since in the unsupervised setting the vocabulary size

is not known in advance, the zerogram cannot be spec-

ified. It is therefore replaced by the likelihood for the

word being a phoneme sequence, calculated by a hier-

archical Pitman-Yor language model (HPYLM) of pho-

nemes H′, similar to (11), where again a hierarchy of

phoneme language models is built up to some order m,

similar to (12). The phoneme zerogram is finally set to

a uniform distribution over the phoneme set. The re-

sulting structure is the NHPYLM, which consists of a

HPYLM for words and a HPYLM for phonemes.

Since we now have to learn the NHPYLM along with

the words, the maximization problem becomes:

(Ŵ, Ĝ) = arg max
W,G

P (W,G|Y)

= arg max
W,G

P (Y|W,G)P (W|G)P (G)

= arg max
W,G

P (Y|W)P (W|G)P (G) (13)

Here we exploited the fact that Y is independent of G if

W is given, since Y is the concatenation of the phoneme

sequences of the words in W. P (Y|W) is again either

one or zero as before. The difference to equation (10) is,

that the nested hierarchical Pitman-Yor process prior

P (G) over the language model is introduced. Instead of

having one particular language model, we have to find

that pair of language model and word sequence which

maximizes the joint probability. The maximization is

carried out by Gibbs sampling, first sampling the word

sequence from P (W|Y,G), calculated similar to (10),

by keeping G constant in (13) and then the language

model from P (G|W) [39] in an alternating and iterative

fashion.

The previous formulation can be extended to acous-

tic features X as input [41]. The maximization problem

10 Oliver Walter et al.

then becomes

(Ŵ, Ĝ, Ŷ) = arg max
W,G,Y

P (W,G,Y|X)

= arg max
W,G,Y

P (X|Y,W,G)P (Y|W,G)P (W|G)P (G)

= arg max
W,G,Y

P (X|Y)P (Y|W)P (W|G)P (G). (14)

Here, P (X|Y) is calculated by an acoustic model, which

we assume to be known and fixed. For the maximization

we now jointly sample a word and phoneme sequence

from P (W,Y|X,G), by keeping G constant in (14) and

then again proceed by sampling the NHPYLM from

P (G|W). To avoid the recomputation of the acoustic

model scores with every iteration, we use a speech rec-

ognizer to produce a phoneme lattice, containing the

most likely phoneme sequences.

Joint sampling of the word and phoneme sequence

can be very costly. For every possible phoneme sequence,

the probabilities of every possible word sequence has to

be calculated. To reduce the computational demand,

the phoneme sequence is first sampled from the speech

input and then a word sequence from that phoneme

sequence [26,25]. For the sampling of the phoneme se-

quence, an additional phoneme HPYLM H, which in-

cludes the word end symbol, is employed. To incor-

porate knowledge of the learned words, the phoneme

HPYLM is sampled from P (H|W) using the sampled

word sequence.

Starting with low language model orders and in-

creasing the orders after ksw iterations leads to conver-

gence to a better optimum. Higher-order LMs deliver

better segmentation results than low-order LMs if the

input sequence is noisefree [25]. On the other hand ini-

tialization of higher-order LMs from noisy input is more

difficult and is likely to lead to convergence to a local

optimum.

Algorithm 1 summarizes the iterative approach to

vocabulary discovery from raw speech. The first step in

the repeat loop is carried out by a phoneme recognizer.

However, to save the computational effort of repeated

phoneme recognition, a phoneme lattice is produced by

the ASR engine in the first iteration, and the updated

HPYLM H is applied by rescoring in later iterations.

Then the most probable phoneme string is extracted

from the lattice using Viterbi decoding. Tasks 2a) and

2b), i.e., word recognition and language model estima-

tion, are carried out on the currently most probable

phoneme sequence using the algorithm of [39].

4.3 Experimental results

Experimental results were obtained using the training

speech data from the Cambridge version of the Wall

Algorithm 1 Iterative vocabulary discovery from raw

speech
Input: X, ksw
Output: Y,W,G,H
Initialization: Set G,H to phoneme zerograms, k = 1
while k ≤ kmax do

1) Transcribe each speech utterance X into phoneme
sequence Y using HPYLM H, resulting in a corpus Y of

phoneme strings: X
H→ Y

2a) Carry out word recognition on the phoneme se-
quences, using the NPYLM G, resulting in a corpus W

of words sequences: Y
G→W

2b) Re-estimate the word NPYLM G and the phoneme
HPYLM H using the word sequences: W→ G,H
if k = ksw then

Increase language model orders
end if
k = k + 1

end while

Street Journal corpus (WSJCAM0) [15], comprised of

7861 sentences. The size of the vocabulary is about 10k

words. A monophone HMM acoustic model was trained

on the training set and decoding was carried out on a

subset of the same set, consisting of 5628 sentences,

using the monophone models and a zerogram phoneme

LM, producing a lattice at the output. The phoneme

error rate of the highest scoring path was about 33%

and the segmentation algorithm was run for kmax = 100

iterations, switching the word language model orders

from n = 1 to n = 2 and phoneme language model

order from m = 2 to m = 8 after ksw = 25 Iterations.

Figure 8 shows the 100 most often found phonetic

words. The bigger a word is printed, the more often

it was found in the data. Some words with more than

Fig. 8 100 most often found phonetic words

three characters and their corresponding phoneme based

representations are listed in table 1, where cw is the

number of times the word was found. Additionally to

the listed words, the numbers one to 10 (“w ah n”, “t

uw”, “th r iy”, “f ao”, “f ay v”, “s ih k s”, “s eh v n”,

“ey t”, “n ay n”, “t eh n”) as well as 20 (“t w eh n t

iy”), 30 (“th er t iy”), 50 (“f ih f t iy”) and 90 (“n ay

n t iy”) are amongst those words.

Autonomous Learning of Representations 11

Rank cw Phonemes Characters
1 3489 dh ax THE

13 447 s eh d SAID
17 365 m ih s t ax MISTER
20 327 f ay v FIVE
23 279 p ax s eh n t PERCENT
25 268 m ih l ia n MILLION
26 267 s ah m SOME
27 263 k ah m p ax n iy COMPANY
29 259 d oh l ax z DOLLARS
33 235 hh ae v HAVE

Table 1 Most often found words with more than 3 characters

In total 28.6% of the words from the running text

were correctly discovered (recall) where 32.2% of all the

discovered words are correct (precision), resulting in an

F-score of 30.3%. The phoneme error rate was reduced

to 24.5%. The precision for the lexicon is 13.2% with a

recall of 21.8%, resulting in a lexicon F-score of 16.4%.

Out of the 100 most often found words, 80 were correct

words. Our implementation needed a runtime of about

10 hours for the 100 iterations on a single core of an

Intel(R) Xeon(R) E5-2640 at 2.50GHz resulting in a

realtime factor of one.

An overview and evaluation of algorithms for acous-

tic model and word discovery can be found in [31].

These algorithms, however, don’t consider recognition

errors in the phoneme sequences as we do. Word dis-

covery on noisy phoneme lattices was also consid-

ered in [41], using similar methods. A comparison in

[26] showed greatly improved F-scores of our proposed

method compared to [41] for word n-grams greater than

1. This is due to a more consistent use of the language

model hierarchy combined with our iterative approach,

making it computationally feasible. For a more detailed

analysis see [25].

4.4 Software

We implemented the algorithm using weighted finite

state transducers (WFSTs) and the OpenFst library.

The implementation is available as a download at

http://nt.uni-paderborn.de/mitarbeiter/oliver-walter/

software/.

4.5 Outlook

Due to the high variability of speech within and es-

pecially across speakers, a single word can have differ-

ent phoneme transcriptions. Recognition errors will also

lead to different phoneme sequences. Two examples can

be found in the 100 most often found words. The num-

ber 100 was discovered as “hh ah n d ax d” and “hh ah

n d r ih d” and the number 90 as “n ay n t iy” and “n

ey t iy”. A combination with metric learning and clus-

tering of similar words with different pronunciations or

spelling errors, could improve the learning result.

References

1. M. Aharon, M. Elad, and A. Bruckstein. k -svd: An algo-
rithm for designing overcomplete dictionaries for sparse
representation. Signal Processing, IEEE Transactions
on, 54(11):4311–4322, Nov 2006.

2. A. Bellet and A. Habrard. Robustness and generalization
for metric learning. Neurocomputing, 151:259–267, 2015.

3. A. Bellet, A. Habrard, and M. Sebban. Good edit simi-
larity learning by loss minimization. Machine Learning,
89(1-2):5–35, 2012.

4. A. Bellet, A. Habrard, and M. Sebban. Good edit simi-
larity learning by loss minimization. Machine Learning,
89(1):5–35, 2012.

5. A. Bellet, A. Habrard, and M. Sebban. A survey on
metric learning for feature vectors and structured data.
CoRR, abs/1306.6709, 2013.

6. Y. Bengio, A. C. Courville, and P. Vincent. Represen-
tation learning: A review and new perspectives. IEEE
Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828,
2013.

7. Y. Bengio, P. Simard, and P. Frasconi. Learning long-
term dependencies with gradient descent is difficult.
IEEE Transactions on Neural Networks, 5(2):157–166,
1994.

8. M. Bernard, L. Boyer, A. Habrard, and M. Sebban.
Learning probabilistic models of tree edit distance. Pat-
tern Recognition, 41(8):2611–2629, 2008.

9. M. Bianchini and F. Scarselli. On the complexity of neu-
ral network classifiers: A comparison between shallow and
deep architectures. IEEE Trans. Neural Netw. Learning
Syst., 25(8):1553–1565, 2014.

10. M. Biehl, K. Bunte, and P. Schneider. Analysis of flow
cytometry data by matrix relevance learning vector quan-
tization. PLoS ONE, 8(3):e59401, 2013.

11. S. Chaudhuri, M. Harvilla, and B. Raj. Unsupervised
learning of acoustic unit descriptors for audio content
representation and classification. In Proc. of Interspeech,
2011.

12. C. Cortes and V. Vapnik. Support-vector networks.
Mach. Learn., 20(3):273–297, Sept. 1995.

13. G. de Vries, S. C. Pauws, and M. Biehl. Insightful stress
detection from physiology modalities using learning vec-
tor quantization. Neurocomputing, 151:873–882, 2015.

14. P. Foldiak and D. Endres. Sparse coding. Scholarpedia,
3(1):2984, 2008.

15. J. Fransen, D. Pye, T. Robinson, P. Woodland, and
S. Younge. WSJCAMO corpus and recording descrip-
tion. Citeseer, 1994.

16. B. Frénay and M. Verleysen. Parameter-insensitive kernel
in extreme learning for non-linear support vector regres-
sion. Neurocomputing, 74(16):2526–2531, 2011.

17. I. Giotis, K. Bunte, N. Petkov, and M. Biehl. Adaptive
matrices and filters for color texture classification. Jour-
nal of Mathematical Imaging and Vision, 47:79–92, 2013.

18. A. Gisbrecht and B. Hammer. Data visualization by
nonlinear dimensionality reduction. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery,
5(2):51–73, 2015.

12 Oliver Walter et al.

19. A. Gisbrecht, A. Schulz, and B. Hammer. Paramet-
ric nonlinear dimensionality reduction using kernel t-sne.
Neurocomputing, 147:71–82, 2015.

20. J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdi-
nov. Neighborhood Component Analysis. In NIPS, 2004.

21. B. Hammer and K. Gersmann. A note on the univer-
sal approximation capability of support vector machines.
Neural Processing Letters, 17(1):43–53, 2003.

22. B. Hammer, D. Hofmann, F. Schleif, and X. Zhu. Learn-
ing vector quantization for (dis-)similarities. Neurocom-
puting, 131:43–51, 2014.

23. B. Hammer and T. Villmann. Generalized relevance
learning vector quantization. Neural Networks, 15(8-
9):1059–1068, 2002.

24. J. Hastad. Almost optimal lower bounds for small depth
circuits. In Proceedings of the Eighteenth Annual ACM
Symposium on Theory of Computing, STOC ’86, pages
6–20, New York, NY, USA, 1986. ACM.

25. J. Heymann, O. Walter, R. Haeb-Umbach, and B. Raj.
Unsupervised Word Segmentation from Noisy Input. In
Automatic Speech Recognition and Understanding Work-
shop (ASRU), Dec. 2013.

26. J. Heymann, O. Walter, R. Haeb-Umbach, and B. Raj.
Iterative bayesian word segmentation for unspuervised
vocabulary discovery from phoneme lattices. In 39th In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP 2014), may 2014.

27. G. E. Hinton. Learning multiple layers of representation.
Trends in Cognitive Sciences, 11:428–434, 2007.

28. J. Hocke, K. Labusch, E. Barth, and T. Martinetz. Sparse
coding and selected applications. KI, 26(4):349–355,
2012.

29. G. Huang, G. Huang, S. Song, and K. You. Trends in
extreme learning machines: A review. Neural Networks,
61:32–48, 2015.

30. A. Hyvärinen and E. Oja. Independent component analy-
sis: algorithms and applications. Neural Networks, 13(4–
5):411 – 430, 2000.

31. A. Jansen, E. Dupoux, S. Goldwater, M. Johnson,
S. Khudanpur, K. Church, N. Feldman, H. Hermansky,
F. Metze, R. Rose, M. Seltzer, P. Clark, I. McGraw,
B. Varadarajan, E. Bennett, B. Börschinger, J. Chiu,
E. Dunbar, A. Fourtassi, D. Harwath, C.-y. Lee, K. Levin,
A. Norouzian, V. Peddinti, R. Richardson, T. Schatz, and
S. Thomas. A summary of the 2012 JHU CLSP work-
shop on Zero Resource speech technologies and models of
early language acquisition. In Proceedings of the 38th In-
ternational Conference on Acoustics, Speech, and Signal
Processing, 2013.

32. S. Kaski, J. Sinkkonen, and J. Peltonen. Bankruptcy
analysis with self-organizing maps in learning metrics.
IEEE Transactions on Neural Networks, 12(4):936–947,
2001.

33. S. Kirstein, H. Wersing, H. Gross, and E. Körner. A life-
long learning vector quantization approach for interactive
learning of multiple categories. Neural Networks, 28:90–
105, 2012.

34. N. Krüger, P. Janssen, S. Kalkan, M. Lappe,
A. Leonardis, J. H. Piater, A. J. Rodŕıguez-Sánchez, and
L. Wiskott. Deep hierarchies in the primate visual cor-
tex: What can we learn for computer vision? IEEE Trans.
Pattern Anal. Mach. Intell., 35(8):1847–1871, 2013.

35. B. Kulis. Metric learning: A survey. Foundations and
Trends in Machine Learning, 5(4):287–364, 2013.

36. M. Lukosevicius and H. Jaeger. Reservoir computing ap-
proaches to recurrent neural network training. Computer
Science Review, 3(3):127–149, 2009.

37. G. D. S. Martino and A. Sperduti. Mining struc-
tured data. IEEE Computational Intelligence Magazine,
5(1):42–49, 2010.

38. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level
control through deep reinforcement learning. Nature,
518(7540):529–533, 02 2015.

39. D. Mochihashi, T. Yamada, and N. Ueda. Bayesian un-
supervised word segmentation with nested Pitman-Yor
language modeling. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language
Processing of the AFNLP: Volume 1-Volume 1, 2009.

40. B. Mokbel, B. Paassen, F.-M. Schleif, and B. Hammer.
Metric learning for sequences in relational lvq. Neuro-
computing, accepted, 2015.

41. G. Neubig, M. Mimura, and T. Kawaharak. Bayesian
learning of a language model from continuous speech.
IEICE TRANSACTIONS on Information and Systems,
95(2), 2012.

42. D. Nova and P. A. Estévez. A review of learning vector
quantization classifiers. Neural Computing and Applica-
tions, 25(3-4):511–524, 2014.

43. P. Schneider, M. Biehl, and B. Hammer. Adaptive rel-
evance matrices in learning vector quantization. Neural
Computation, 21(12):3532–3561, 2009.

44. S. Seo and K. Obermeyer. Soft learning vector quantiza-
tion. Neural Computation, 15:1589–1604, 2003.

45. S. Shalev-shwartz, Y. Singer, and A. Y. Ng. Online and
batch learning of pseudo-metrics. In In ICML, pages
743–750. ACM Press, 2004.

46. Y. Shi, A. Bellet, and F. Sha. Sparse compositional met-
ric learning. CoRR, abs/1404.4105, 2014.

47. M.-h. Siu, H. Gish, A. Chan, W. Belfield, and S. Lowe.
Unsupervised training of an hmm-based self-organizing
unit recognizer with applications to topic classification
and keyword discovery. Computer Speech & Language,
28(1):210–223, 2014.

48. I. Steinwart. Consistency of support vector machines and
other regularized kernel classifiers. IEEE Transactions
on Information Theory, 51(1):128–142, 2005.

49. Y. W. Teh. A Bayesian interpretation of interpolated
Kneser-Ney. 2006.

50. Y. W. Teh. A hierarchical Bayesian language model
based on Pitman-Yor processes. In Proceedings of the
21st International Conference on Computational Lin-
guistics and the 44th annual meeting of the Association
for Computational Linguistics. Association for Compu-
tational Linguistics, 2006.

51. P. Tiño and B. Hammer. Architectural bias in recurrent
neural networks: Fractal analysis. Neural Computation,
15(8):1931–1957, 2003.

52. L. Van der Maaten, E. Postma, and H. Van den Herik.
Dimensionality reduction: A comparative review. Tech-
nical Report TiCC TR 2009-005, 2009.

53. O. Walter, V. Despotovic, R. Haeb-Umbach, J. Gem-
meke, B. Ons, and H. Van hamme. An evaluation of unsu-
pervised acoustic model training for a dysarthric speech
interface. In INTERSPEECH 2014, 2014.

54. O. Walter, R. Haeb-Umbach, S. Chaudhuri, and B. Raj.
Unsupervised Word Discovery from Phonetic Input Us-
ing Nested Pitman-Yor Language Modeling. ICRA Work-
shop on Autonomous Learning, 2013.

Autonomous Learning of Representations 13

55. O. Walter, T. Korthals, R. Haeb-Umbach, and B. Raj.
A Hierarchical System For Word Discovery Exploiting
DTW-Based Initialization. In Automatic Speech Recog-
nition and Understanding Workshop (ASRU), Dec. 2013.

56. K. Q. Weinberger and L. K. Saul. Distance metric learn-
ing for large margin nearest neighbor classification. J.
Mach. Learn. Res., 10:207–244, June 2009.

57. B. Widrow and M. A. Lehr. 30 years of adaptive neural
networks: Perceptron, madaline, and backpropagation.
Proceedings of the IEEE, 78(9):1415–1442, 1990.

58. L. Wiskott, P. Berkes, M. Franzius, H. Sprekeler, and
N. Wilbert. Slow feature analysis. Scholarpedia,
6(4):5282, 2011.

59. E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Dis-
tance metric learning, with application to clustering with
side-information. In ADVANCES IN NEURAL INFOR-
MATION PROCESSING SYSTEMS 15, pages 505–512.
MIT Press, 2003.

60. X. Zhu, F. Schleif, and B. Hammer. Adaptive confor-
mal semi-supervised vector quantization for dissimilarity
data. Pattern Recognition Letters, 49:138–145, 2014.

Oliver Walter received his Diplom de-

gree in Electrical Engineering from the

University of Paderborn, Germany. From

2012-2015 he worked as a scientific assis-

tant in the DFG funded research project

”Sparse Coding Approaches to Language

Acquisition” in the Department of Com-

munications Engineering at the University of Pader-

born, Germany. He continues his work on the research

project as PhD student since 2015.

Reinhold Haeb-Umbach received the

Dipl.-Ing. and Dr.-Ing. degree in Elec-

trical Engineering from RWTH Aachen

University in 1983 and 1988, respec-

tively. From 1988 to 1989 he was a post-

doctoral fellow at the IBM Almaden Re-

search Center, San Jose, CA, conducting research on

coding and signal processing for recording channels.

From 1990 to 2001 he was with Philips Research work-

ing on various aspects of automatic speech recognition.

Since 2001 he is a full professor in communications en-

gineering at the University of Paderborn, Germany. His

main research interests are in statistical speech signal

processing and recognition.

Bassam Mokbel submitted his PhD-

thesis at Bielefeld University, Germany,

on the topic of learning interpretable

models in 2015. He is member of the

research group for theoretical computer

science within the Center of Excellence

for Cognitive Interaction Technology (CITEC). He

studied computer science at Clausthal University of

Technology in Germany, where he received his Diploma

degree in 2009. He joined the CITEC in April 2010, and

he has been working in the context of the DFG Priority

Programme 1527 for ”Autonomous Learning”.

Benjamin Paassen received his Mas-

ters degree in Intelligent Systems from

Bielefeld University, Germany. From

2012-2015 he worked as scientific assis-

tant in the DFG funded research project

”Learning Feedback in Intelligent Tutor-

ing Systems” at the Cognitive Interaction Technology

Center of Excellence at Bielefeld University, Germany.

He continues his work on the research project as PhD

student since 2015.

Barbara Hammer received her PhD

in Computer Science in 1995 and her

Venia Legendi in Computer Science in

2003, both from the University of Os-

nabrück, Germany. She has been profes-

sor for Theortical Computer Science at

Clausthal University of Technology since 2004, and she

joined CITEC at Bielefeld University as Professor for

Theoretical Computer Science for Cognitive Systems in

2010.

