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ABSTRACT

Joint audio-visual speaker tracking requires that the lo-

cations of microphones and cameras are known and that

they are given in a common coordinate system. Sensor self-

localization algorithms, however, are usually separately devel-

oped for either the acoustic or the visual modality and return

their positions in a modality specific coordinate system, often

with an unknown rotation, scaling and translation between the

two. In this paper we propose two techniques to determine

the positions of acoustic sensors in a common coordinate

system, based on audio-visual correlates, i.e., events that are

localized by both, microphones and cameras separately. The

first approach maps the output of an acoustic self-calibration

algorithm by estimating rotation, scale and translation to the

visual coordinate system, while the second solves a joint sys-

tem of equations with acoustic and visual directions of arrival

as input. The evaluation of the two strategies reveals that joint

calibration outperforms the mapping approach and achieves

an overall calibration error of 0.20m even in reverberant

environments.

Index Terms— coordinate mapping, absolute geometry

calibration

1. INTRODUCTION

Advanced teleconferencing systems, smart rooms or surveil-

lance and monitoring systems are example applications of dis-

tributed audio-visual sensor networks. For many tasks, such

as automatic camera steering, events or objects of interest

have to be localized either acoustically, visually or jointly,

which in turn requires that the positions of the sensors need

to be known. While the sensor positions can be determined

manually, it is more convenient to do so automatically, in par-

ticular if they can change over time, e.g., if a smartphone,

which is part of the network, is carried by a moving person.

Automatic geometry calibration of sensors is typically re-

alized by localizing and tracking an object and subsequently

determining the position of the sensors, such that the measure-

ments of the object’s positions are most plausible.
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Visual calibration algorithms work on features extracted

from the camera images. They can be divided into two cat-

egories [1]. The first one tries to extract these features from

easily recognizable objects [2], whereas the second group ex-

tracts features from an arbitrary scene to compare the field of

view of the individual cameras [3].

For acoustic sensor nodes time of flight (ToF) based al-

gorithms, which employ special calibration hardware and sig-

nals to achieve high positioning accuracies [4, 5], have been

proposed. However, a tight clock synchronization between

transmitter and receiver is required, whereas [6] relaxed this

limitation by estimating the differences in the sampling phase

and the sensor positions jointly. If the calibration is based on

time difference of arrival (TDoA) measurements, loudspeaker

and microphones need no longer be synchronized, and a hu-

man speaker can be used as sound source. However, a clock

synchronisation of the A/D converters of the distributed mi-

crophones is still required. Even this requirement becomes

obsolete if direction of arrival (DoA) based techniques are em-

ployed [7, 8]. TDoA and DoA based calibration if carried out

with artificial calibration signals with appropriate correlation

properties, will typically achieve higher accuracy compared

to speech signal based approaches [9]. Calibration based on

natural speech is preferable from a usability point of view, as

it can be carried out in the background unnoticed by the users

of the audio-visual sensor network.

Most geometry calibration techniques are unable to report

the sensor positions in absolute coordinates. They return their

estimates in a modality specific coordinate system, resulting

in an unknown rotation, translation and scaling between the

coordinate axes of the acoustic and visual sensor network.

The scaling ambiguity can be fixed if ToA or TDoA measure-

ments are employed [10, 11]. If the calibration is based solely

on DoA measurements, the scale ambiguity still remains, re-

gardless of the modality used [11, 12].

If the sensor positions of one modality are known, the dis-

placement between the coordinate systems can be resolved by

exploiting audio-visual correlates, i.e., events or objects that

can be localized both acoustically and visually [13, 14]. In

this paper we build upon this idea and present two strategies

to localize the acoustic sensors in a joint audio-visual coor-

dinate system. Both the acoustic and visual localization is



solely based on DoA measurements as they impose the least

synchronisation requirements as detailed above.

The first approach uses the existing acoustic sensor cal-

ibration techniques from [7]. Based on the relative geome-

try estimates the speaker trajectory can be recovered with the

intersection based approach from [15], while simultaneously

the speaker trajectory is estimated by the visual sensor net-

work. By computing the optimal mapping between the acous-

tic and visual trajectory we are able to reveal rotation, transla-

tion and scale between both modalities. The second approach

exploits the fact that the sensors of both modalities deliver

DoA estimates. Thus, acoustic and visual measurements can

be cast in a single system of equations to determine the acous-

tic sensor positions, while the known visual sensor positions

serve as anchor positions to eliminate the scale ambiguity. A

key component of both DoA based calibration methods is the

random sample consensus (RANSAC) outlier rejection algo-

rithm [16], which diminishes the impact of poor DoA esti-

mates on the localization performance. In case of the joint

calibration, this scheme will not only reject acoustic DoA out-

liers, it will reject visual DoA outliers as well.

In the next section we introduce the first approach based

on a coordinate mapping, whereas Sec. 3 describes the joint

calibration approach. The performance of both algorithms is

evaluated in Sec. 4, before Sec. 5 concludes this paper.

2. COORDINATE MAPPING

Our goal is the estimation of the coordinates of I acoustic

sensors, where the coordinate system is defined by the known

positions of K visual sensors. The location of the k-th visual

sensor node is described in 2D by the position vector ck and

orientation γk. Now, consider a moving speaker located at

position et at time t, who is seen by the visual sensors at

DoAs δk,t, k=1, . . . ,K . A position estimate et is obtained

from the DoAs by the intersection based technique presented

in [15].

The acoustic DoA estimates ϕi,t, i=1, . . . , I; t=1, . . . , T ,

captured from the same speaker trajectory are used to deter-

mine estimates m̃i, i=1, · · · , I , of the acoustic sensor posi-

tions and estimates Θi of the orientations, using the calibra-

tion algorithm from [7]. This algorithm can only provide a

relative geometry with an unknown scale factor. Therefore,

only relative speaker position estimates ẽt are obtained, using

the same intersection based method as above.

Since the acoustic event locations ẽt are described in a

different coordinate system as the visual estimates et, there

arises the following coordinate mapping problem:

et = sRẽt + d; t = 1, . . . , T , (1)

where s models the unknown scale factor and R and d the

rotation and translation between the acoustic and the visual

coordinate system. Mapping a set of points from one coordi-

nate system to another is known as Rigid Body Transforma-

tion (RBT). In contrast to the widespread approach from [17]

to compute the RBT parameters (scale, rotation and transla-

tion) via a Singular Value Decomposition (SVD) we suggest a

computation in the Discrete Fourier transform (DFT) domain,

which turned out to be computationally more efficient.

Hence, we introduce a complex representation of the esti-

mated speaker positions as ut=ẽ1,t+jẽ2,t and vt=e1,t+je2,t
respectively, where ẽt=(ẽ1,t, ẽ2,t) and et=(e1,t, e2,t) are the

two-dimensional speaker positions in the acoustic and visual

coordinate system, respectively. Thus, the mapping problem

of Eq. (1) is expressed as

vt = αut + β; α, β ∈ C. (2)

The absolute value and the phase of α correspond to scale

and orientation, while β corresponds to the translation. Ar-

ranging all observations into vectors v=[v1, . . . , vT ]
T and

u=[u1, . . . , uT ]
T the least squares estimate for the RBT pa-

rameters in the complex space is given by

〈α∗, β∗〉 = argmin
α,β

(αu+ β1− v)
H
(αu+ β1− v) , (3)

where 1 denotes an T -element vector of ones and (·)H the

complex conjugate transpose of a vector.

Let x and y denote the DFTs ofu and v. The optimization

problem of Eq. (3) is expressed in the DFT domain as

〈α∗, β∗〉 = argmin
α,β

(αx + βz− y)H (αx+ βz − y) , (4)

where z=
[
1, 0, . . . , 0

]T
is a vector of length T . Due to the

orthogonality properties of the DFT the joint optimization is

decoupled into two separate optimizations:

α∗ = argmin
α

(αx2:T−y2:T )
H (αx2:T−y2:T ) and (5)

β∗ = argmin
β

(α∗x1+β−y1)
H
(α∗x1+β − y1) , (6)

where the first bin of the DFTs is denoted by (·)1 and all other

bins by (·)2:T . Since Eq. (5) and Eq. (6) are general least

squares problems, the solution is found to be

α∗ = xH
2:Ty2:T /

(
xH
2:Tx2:T

)
and β∗ = y1 − α∗x1. (7)

The RBT parameters can be retrieved as follows:

s = |α| , R =

[
ℜ{α

s
} −ℑ{α

s
}

ℑ{α

s
} ℜ{α

s
}

]
and d =

1

N

[
ℜ{β}
ℑ{β}

]
, (8)

where ℜ and ℑ denote real and imaginary part, respectively.

If this transformation is applied to the relative acoustic sen-

sor position estimate m̃i according to Eq. (1), the absolute

acoustic sensor positions mi in the visual coordinate system

are obtained.

To summarize, the calibration algorithm to recover the

acoustic sensor positions in the visual coordinate system con-

sists of three steps. First, run the relative acoustic calibration



algorithm and estimate the speaker trajectory. At the same

time, track the speaker in the visual domain. Secondly, com-

pute the DFTs of both trajectories, evaluate Eq. (7) and com-

pute the RBT parameters by Eq. (8). Finally, use the RBT pa-

rameters to transform the acoustic sensor position estimates

from the first step into the visual coordinate system.

The DFT based RBT parameter estimation delivers the

same results as the conventional SVD based technique [17],

but our FFT based implementation is twice as fast as the SVD.

3. JOINT CALIBRATION

Since the acoustic and the visual sensors deliver DoA esti-

mates, we propose to extend the calibration algorithm that

was used for the acoustic sensors only in step one of the al-

gorithm presented in the last section, to both modalities and

jointly calibrate the audio-visual network. Due to the known

positions of the visual sensors, the scale ambiguity vanishes.

In the local coordinate system of the i-th acoustic sensor

a DoA measurement can be modelled as a unit length vector

fi,t = [cos (ϕi,t) sin (ϕi,t)]
T, (9)

pointing from the sensor position to the event location. This

measurement vector will be compared with a prediction vec-

tor

f̂i,t =

[
cos (ϕ̂i,t −Θi)
sin (ϕ̂i,t −Θi)

]
, (10)

where ϕ̂i,t=arg {et −mi}, see Fig. 1. Following our pre-

vious publication [7] this prediction can be formulated as a

function of the geometry parameters as follows:

f̂i,t =

[
cos(Θi) sin(Θi)
− sin(Θi) cos(Θi)

]
et −mi

‖et −mi‖
. (11)

By introducing the abbreviation

f =

I∑

i=1

T∑

t=1

‖fTi,t f̂i,t‖
2 (12)

and arranging the sensor positions, sensor orientations and

events into matrices M=[m1, . . . ,mI ], Θ=[Θ1, . . . ,ΘI ]

et

mi

ϕi,t

Θi

ϕ̂i,t
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y

Fig. 1. Geometric relation between acoustic sensor and event

location.

and E=[e1, . . . , eT ] respectively, the geometry can be recov-

ered by

〈M∗,Θ∗,E∗〉 = argmax
M,Θ,E

{f} . (13)

The maximization problem of Eq. (13) can easily be trans-

formed into a root-finding problem, since fi,t and f̂i,t are unit

length vectors. Subsequently, the minimization is carried out

by Newton’s method.

The formulation for the estimated and predicted DoA vec-

tors hold for the visual sensors, too. Thus we define

gk,t = [cos (δk,t) sin (δk,t)]
T and (14)

ĝk,t =

[
cos(γk) sin(γk)
− sin(γk) cos(γk)

]
et − ck

‖et − ck‖
, (15)

with the only difference that the visual sensor positions ck
and the corresponding orientations γk are known. Hence, the

visual DoA measurements form additional constraints for the

optimization of Eq. (13), and we incorporate them to obtain a

formulation which allows a joint audio-visual calibration:

〈M∗,Θ∗,E∗〉=argmax
M,Θ,E

{
f +

K∑

k=1

T∑

t=1

‖gT
k,tĝk,t‖

2

}
. (16)

The optimization of Eq. (16) is again turned into a root-

finding problem in order to apply Newton’s method, where

the visual measurements provide the required constraints to

obtain an absolute sensor position estimate in the coordinate

system defined by the visual sensors.

In the noise free case, with perfect DoA measurements,

the sensor positions and orientations can perfectly be recov-

ered, but imperfect acoustic or visual DoA estimates caused

by reverberation or false detections can prevent a success-

ful optimization. Our earlier investigations presented in [7]

showed, that this issue can successfully be addressed by the

RANSAC [16]. Since the application of the RANSAC is

straightforward we highlight only the relevant parts. The pro-

cedure can be summarized as follows:

1. Randomly select the minimal number of observations

necessary to solve Eq. (16), e.g. T > 3I
I+K−2

.

2. Determine sensor positions and orientations based on

the selected observations by solving Eq. (16).

3. Compute the intersection of all DoA axes for each

event. The hypothesized event location is the mean

of all intersections. A DoA measured by a sensor

becomes part of the candidate set C, if the average dis-

tance of all its intersection points to the hypothesized

event location is smaller than a threshold.

4. If the number of elements in C is larger than the consen-

sus set, estimate the sensor positions and orientations

based on C. It becomes the new consensus if its error is

smaller than the error of the current consensus.

5. If the number of elements in C is smaller than consen-

sus set, choose a new initial set or stop the algorithm as

soon as the maximum number of iterations is reached.



As a modification of this standard approach, we used the up-

dated consensus set of step 4 as the input for the second step.

4. SIMULATION RESULTS

In order to evaluate the performance of both calibration strate-

gies we used the following simulation framework. We simu-

lated 3 random speaker trajectories, where the speaker stops

at approximately 140 positions for 5 seconds before he moves

on. The sensors are located in a room of size 6.2m × 7.2m.

4 simulated cameras and 4 simulated five-element circular mi-

crophone arrays (radius 5 cm) are located sufficiently far apart

from the walls, where the cameras were oriented towards the

center of the room. The microphone signals are generated

by the Image Method [18], for reverberation times from 0ms

up to 500ms. Acoustic DoA estimates are obtained by cor-

relating the filter impulse responses of a filter-and-sum beam-

former, which continuously adapts to the moving source [19].

Rather than working on a true camera signal, visual

DoA estimates are simulated as follows. We employ Hid-

den Markov Models (HMMs) to describe the errors in the

DoA estimation. A limited field of view of the camera is

taken into account by dropping all angles outside a window

of ±30◦ relative to the camera orientation. This effect is

modelled by two separate HMMs. The first HMM is for the

case that a speaker is inside the visible region of the camera.

Here we distinguish the states ’detection’, ’missed detection’

and ’false detection’. The second HMM models the case

that no speaker is inside the visible region. It incorporates

the states ’false detection’ and ’no detection’. The transition

probabilities of these models and the variance of the error

distribution have been learned by computing histograms of

oriented gradients (HOG) and applying a support vector ma-

chine (SVM) to identify the head and shoulder region of the

speaker on the AV16.3 audio-visual corpus [20], using the

annotated sequences seq01-1p-0000 and seq15-1p-0100.

In order to perform a fair comparison between the ap-

proaches presented in Sec. 2 and Sec. 3 the estimation of

the RBT parameters is embedded into a RANSAC framework,

too, since we have shown in [13] that the RANSAC can boost

the performance of the estimation of the RBT parameters.

Since the RANSAC is a random process, we average over

multiple runs. A sensor configuration is characterized by the

positions and orientations. Fig. 2 compares the mean position-

ing error (MPE) of the coordinate mapping based calibration

(RBT) and the joint calibration strategy (Joint). It can be ob-

served that the joint calibration clearly outperforms the RBT

approach, in particular at low reverberation times. Obviously,

it is advantageous to avoid premature decisions on acoustic

source and sensor positions until the visual information is ac-

counted for, as it is done in the joint calibration approach.

The coordinate mapping approach has limited capabilities

to determine a precise scale factor, and errors in the scale fac-

tor dominate its performance. In order to isolate scale fac-
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Fig. 2. Comparison of mean positioning error (MPE) for

joint audio-visual calibration (joint), calibration by coordinate

mapping (RBT) and coordinate mapping with an oracle infor-

mation (RBT + oracle).

tor estimation errors from orientation and translation errors

we performed an oracle experiment, where the scaling is as-

sumed to be known. Indeed, the performance is now similar

to that of the joint approach for low reverberation times and

superior in a highly reverberant environment. The sensor ori-

entation error of both approaches is approximately the same

and smaller than 2◦ for all reverberation times.

To achieve precise calibration results a suitable spatial

event configuration is more important than the total number of

available events. Thus, we selected 15 events with an appro-

priate configuration of one exemplar trajectory and perform

a joint calibration. The results of Tab. 1 show that a similar

performance as in the previous experiment, which used the

complete trajectory, is possible.

T60 / ms 0 100 200 300 400 500

MPE / m 0.01 0.02 0.06 0.14 0.13 0.23

Table 1. Joint calibration using 15 events with appropriate

spatial configuration.

5. CONCLUSIONS

We have described two different strategies to obtain an ab-

solute calibration of an acoustic sensor network if it is com-

bined with a visual sensor network, whose sensor positions

are known. By using one of the two strategies, the scaling

problem identified in earlier publications [3, 7, 11] can be

solved. The first approach, which relies on the mapping of an

acoustic to a visual speaker trajectory, works with arbitrary

acoustic calibration strategies and is therefore very flexible.

However, the performance is limited due to the scale estima-

tion errors. The second approach, which is based on the so-

lution of a system of nonlinear equations employing acoustic

and visual DoA measurements, is computationally more com-

plex. It outperformed the first approach for all reverberation

times and delivered a calibration error smaller than 0.20m

and 2◦ even in reverberant environments.
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