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ABSTRACT

We are concerned with the so-called fingerprinting method for

WiFi-based indoor positioning, where the measured received signal

strength index (RSSI) is compared with training data to come up

with an estimate of the user’s location. We introduce a method for

adapting the trained models to the statistics of the RSSI values of the

target (testing) WiFi device, which is derived from the Maximum

Likelihood Linear Regression (MLLR) framework. By introducing

regression classes the assumption of a linear relationship between

the RSSI readings of the testing device and the training data is

relaxed, leading to superior adaptation performance. Parameter

adaptation formulas are derived for the general case of censored

and dropped data. While censoring occurs due to the limited sensi-

tivity of WiFi chips, dropping is probably caused by limitations of

the operating system of the portable devices. Experiments both on

simulated and real-world data demonstrate the effectiveness of the

proposed algorithms.

Index Terms— Indoor positioning, signal strength, censored

data, expectation maximization, maximum likelihood linear regres-

sion

1. INTRODUCTION

Due to the unavailability of GPS, accurate indoor positioning re-

mains a challenging task. Many algorithms have been proposed,

such as lateration based, angulation based and fingerprinting based

techniques using radio signals, such as Ultra-Wideband, ZigBee,

Bluetooth Low Energy or WiFi, often in combination with ac-

celerometer and magnetometer measurements, see e.g. [1, 2, 3, 4].

However, due to multipath propagation, missing line-of-sight,

unsynchronized clocks etc., lateration and angulation based tech-

niques seem to be unsuitable for low-cost positioning systems. As a

result the fingerprinting method, which has been pioneered in [2], is

of particular interest, where in an offline (training) phase the read-

ings of the RSSI of access points (APs) measured at the possible tar-

get positions are gathered, and the measurements during the online

(classification) phase are compared to these training data to come up

with a decision on the user’s location. WiFi fingerprinting has found

widespread use due to the availability of the infrastructure and the

ubiquity of WiFi in portable devices, such as laptops, smartphones

etc..

Accurate positioning based on RF signal strength faces also

many challenges. It is well known that the WiFi scan results can

vary greatly, depending on the number of people in the vicinity, the

orientation of the device, and many more factors. To overcome these

variations, refined statistical models and classification rules have

been developed [4, 5, 6].

It was also found that WiFi chips exhibit a limited sensitivity and

that RSSI values below the reception threshold (e.g., −100 dBm)

are censored, i.e., can be thought of being clipped to that minimum

value. In [5] we have proposed an Expectation Maximization (EM)

algorithm to estimate the parameters of such censored GAUSSIAN

data. In this way one was able to exploit the location information that

is given by the fact that some APs are partly ’inaudible’ at certain

locations while they are not at other positions.

In [7] it was pointed out that differences in RSSI readings are

not only caused by environmental and propagation factors, but that

they are also caused by different hardware, i.e., different chipsets

or antennas. The authors observed differences as high as −30 dBm

between chipsets of different vendors and up to −20 dBm among

chipsets of the same vendor, and even devices using the same chipset

could show significantly different RSSI readings.

This and the so-called drop-out problem mentioned in [7] we

also experienced in our own investigations. The latter refers to the

fact that occasionally RSSI readings of supposedly strong enough

access points were not reported by the software. A closer look at

this phenomenon revealed that the drop-out rate increased with the

number of access points: if more than 20 APs were above the recep-

tion threshold, the drop-out rate rose to about 20%, with a tendency

to increase to up to 40% for more than 40 audible APs. With the

ubiquity of WiFi, such large numbers of APs are not unrealistic. We

conjecture that the dropping phenomenon is caused by limitations of

the operating system, such as limited buffer sizes or time-outs.

In this paper we propose algorithms to counteract the negative

effects of drop-outs and differences in hardware variations on the po-

sitioning accuracy. We will extend the EM algorithm for the estima-

tion of the parameters of a GAUSSIAN in the presence of censored

data that was presented in [5] to the case of random dropping of

measurements at an unknown dropping rate. Furthermore, an adap-

tation algorithm will be proposed that adapts the parameters of the

trained models to the statistics of the RSSI measurements of the tar-

get testing device. Compared to the calibration method proposed in

[8], where a linear relationship was assumed between the RSSI read-

ings of the training and the target device, that was learnt by a Least

Squares approach, we relax the linearity assumption by clustering

user positions in multiple regression classes that share the same lin-

ear relationship, however different from the other clusters. We also

investigate the benefits from adapting the variances, in addition to

the means of the training models. The parameters of the transfor-

mations are learnt as to maximize the likelihood of the adaptation

data, adopting a very successful approach to speaker adaptation in

automatic speech recognition, known as Maximum Likelihood Lin-

ear Regression (MLLR) [9, 10, 11].



2. PARAMETER ESTIMATION AND CLASSIFICATION IN

THE PRESENCE OF CENSORED AND DROPPED DATA

2.1. Parameter Estimation

In [5], an EM algorithm has been derived for estimating the parame-

ters of censored GAUSSIAN data. In this paper we extend the model

to consider the presence of dropped data in the measurements, see

Fig. 1.

xnyn
max(yn, c)

∼ N (µ, σ2)

c

dn

dn = 0

dn = 1

Dropping Censoring

Fig. 1. Measurement model.

Here, the hidden variables dn, n = 1, . . . N , indicate whether

an observation is dropped (dn = 1) or not (dn = 0), where π =
P (dn = 1) is called the dropping rate in the following. The vari-

ables are gathered in the binary vector d = [d1, . . . , dN ], where N
is the number of measurements. Further, define y = [y1, ..., yN ],
where the yn are i.i.d. with GAUSSIAN probability density func-

tion (PDF) pY (yn) = N (yn;µ, σ
2) if dn = 0, and yn = c if

dn = 1, where we set c to the smallest measurable RSSI value (e.g.,

c = −100 dBm). Observable are the censored data x = x1, ..., xN ,

where xn = max(yn, c), with the censoring threshold c as above.

Notice the difference between censoring and drop-outs: Even if

the parameters of the GAUSSIAN are such that practically no censor-

ing occurs (because µ ≫ c), there will still occur drop-outs!

Our goal is to estimate the parameters θ = {µ, σ2, π}. This

will be achieved by the Expectation Maximization (EM) algorithm,

where the hidden variables are {y,d} and the observable are {x}.

Noting that xn does not convey more information about θ than yn,

the expected log-likelihood of the complete data, given the observed,

is given by:

Q(θ; θ(κ)) = E[ln[p(y,d; θ)]|x; θ(κ)]

=

N
∑

n=1

1
∑

dn=0

∫

∞

−∞

ln[p(yn, dn; θ)] · p(yn, dn|xn; θ
(κ))dyn, (1)

where κ is the iteration index.

We first write p(yn, dn|xn) = p(yn|dn, xn)P (dn|xn). Then

we find for data that are not dropped (dn = 0)

p(yn|dn = 0, xn; θ
(κ)) =

{

δ(yn − xn), if xn > c
N (yn;θ(κ))

I0(θ
(κ))

, if xn = c
(2)

and for data that are dropped (dn = 1)

p(yn|dn = 1, xn; θ
(κ)) =

{

0, if xn > c

δ(yn − c), if xn = c
. (3)

Here, Ij(θ
(κ)), j = 0, 1, 2, is defined as follows:

Ij(θ
(κ)) =

∫ c

−∞

y
jN
(

y;µ(κ)
, (σ2)(κ)

)

dy. (4)

Furthermore, the posterior of the hidden variable dn can be com-

puted using Bayes’ rule

P (dn|xn; θ
(κ)) =

p(xn|dn; θ
(κ))P (dn)

∑1
dn=0 p(xn|dn; θ(κ))P (dn)

. (5)

Four cases can be discerned. Using the notation βn(d, z) :=

P (dn|z(xn); θ
(κ)), where z(xn) = 1 indicates that xn = c and

z(xn) = 0 that xn > c, we obtain:

βn(1, 1) =
π(κ)

I0(θ(κ))(1− π(κ)) + π(κ)
(6)

and βn(0, 1) = 1 − βn(1, 1). Furthermore, it is obvious that

βn(1, 0) = 0 and thus βn(0, 0) = 1.

We further note that

p(yn, dn; θ) = P (dn; θ)p(yn|dn; θ)

=

{

πδ(yn − c), if dn = 1
(1− π)N (yn; θ), if dn = 0

(7)

Using all this in (1) and calculating the derivative of the auxiliary

function, the following iterative parameter estimation formulas can

be derived:

µ
(κ+1) =

∑N

n=1(1− zn)xn + I1(θ
(κ))

I0(θ
(κ))

∑N

n=1 znβn(0, 1)

N −
∑N

n=1 znβn(1, 1)
(8)

(

σ
2)(κ+1)

=

∑N

n=1

[

zn

(

I2(θ
(κ))

I0(θ
(κ))

− 2µ I1(θ
(κ))

I0(θ
(κ))

+ µ2
)

βn(0, 1)

]

N −
∑N

n=1 znβn(1, 1)

+

∑N

n=1

[

(1− zn)(xn − µ)2
]

N −
∑N

n=1 znβn(1, 1)
(9)

π
(κ+1) =

∑N

n=1 znβn(1, 1)

N
, (10)

These formulas reduce to the ones presented in [5] for censored data

only, i.e., if the dropping rate is set to π = 0.

2.2. Classification

While the derivation in the last section was done for scalar measure-

ments for simplicity, we now assume that RSSI readings of NAP

access points are available, which are gathered in the observation

vector x. An optimal classification rule for censored GAUSSIAN

data has been given in [5] where the user’s location is determined as

that position ℓk, which has the highest posterior probability:

p(ℓk|x) =

∏NAP

i=1 p(xi|ℓk)P (ℓk)
∑K

k′=1

∏NAP
i=1 p(xi|ℓk′)P (ℓk′)

(11)

where K is the number of offline training locations and xi is the

RSSI of i-th AP. P (ℓk) is the prior on the position. Here we assumed

independence of the RSSIs of different APs.

For censored and dropped GAUSSIAN data, the likelihood

p(xi|ℓk) can be calculated as follows

p(xi|ℓk) =

{

N (xi; µ̂k,i, σ̂
2
k,i), if xi > c

(1− π̂k,i)I0(µ̂k,i, σ̂
2
k,i) + π̂k,i, if xi = c

. (12)

Here, (µ̂k,i, σ̂
2
k,i, π̂k,i) are the estimated parameters of the i-th AP

at location ℓk.

3. MLLR BASED ADAPTATION

The RSSI readings that are used for positioning have been shown

to depend on the hardware, in particular on the WiFi chipset and

on the antenna used in the target device that is to be located. This

dependency can result in large positioning errors if the target device



employs different hardware than the device that was used to collect

the training data.

MLLR adaptation aims at determining the parameters of an

adaptation matrix W such that the likelihood of the adaptation data

is maximized [9, 10]. In the following we assume supervised adap-

tation, i.e., the presence of a calibration phase, in which the positions

where the adaptation RSSI values have been measured, are known.

Let µk,i be the mean value of the GAUSSIAN describing the PDF

of the RSSI values of the i-th AP at position ℓk. We gather the mean

values of all APs in vectors µk = [µk,1, . . . , µk,i, . . . , µk,NAP
]T

for all positions ℓk, k = 1, . . . ,K. Our goal is to estimate adapted

mean vectors µ̂k via

µ̂k = W
(c(k))

ξk = A
(c(k))

µk + b
(c(k))

, (13)

where W = [A|b] is the (NAP × NAP + 1)-dimensional aug-

mented transformation matrix which gathers the parameters of the

affine transform and ξk = (µT
k , 1)

T is the extended mean vector.

Note that we consider the general case of multiple transformation

matrices, where c(k) ∈ {1, C} is the regression class index, which

indicates which of the C affine transforms is to be applied to the

GAUSSIAN describing position ℓk.

Similarly, let Σk be the (diagonal) covariance matrix of the

GAUSSIAN random vector modelling the RSSI readings of the APs

at position ℓk. We will also consider variance adaptation:

Σ̂k = B
T
kH

(c(k))
Bk (14)

where H(c(k)) is the transform to be estimated and Bk is the

Choleski factor of Σk. Assuming diagonal covariance matrices,

eq. (14) simplifies to σ̂2
k,i = h

(c(k))
i σ2

k,i; i = 1, . . . , NAP .

To determine the maximum likelihood estimates of the transfor-

mation matrices for mean and variance from the adaptation data we

employ again the EM algorithm.

Let γk(n) be the posterior probability that RSSI measurement

vector xn is from position ℓk. In the case of supervised adaptation

considered here it is equal to one if the measurement was indeed

from position ℓk and zero else.

The expected loglikelihood of the complete data, given the ob-

served, has a similar form as before:

Q(λ;λ(κ)) =

K
∑

k=1

N
∑

n=1

γk(n)

NAP
∑

i=1

1
∑

dn,i=0
∫ ∞

−∞

ln (p(yn,i, dn,i;λ)) p(yn,i, dn,i|xn,i; λ
(κ))dyn,i. (15)

Here λ = {λk,i; k = 1, . . . ,K; i = 1, . . . , NAP }, where λk,i =

{πk,i,w
(c(k))
i , h

(c(k))
i }, is a short hand notation for the parameters

to be estimated. Here, w
(c(k))
i is the i-th row of W(c(k)). In (15) the

first sum is over the locations for which adaptation data are avail-

able, the second enumerates the adaptation data, while the third is

over all APs and the fourth over the possible values of the random

variable dn,i which indicates whether the i-th component of the n-th

observation is dropped or not.

The terms in Eq. (15) have already been discussed in Section 2

with the only difference that yn,i is now assumed to be drawn

from a GAUSSIAN with adapted parameters: yn,i ∼ N (µ̂k,i =

w
(c(k))
i ξk, σ̂

2
k,i = h

(c(k))
i σ2

k,i).

Reestimation formulas for πk,i, w
(c(k))
i and h

(c(k))
i are obtained

by computing the derivatives of the auxiliary function in Eq. (15)

w.r.t. these parameters and setting them to zero. This leads to the

following update equation for the rows of W(c(k)):

N
∑

n=1

γk(n)

σ2
k,i

(

zn,i

I1(λ
(κ)
k,i )

I0(λ
(κ)
k,i )

βk,n,i(0, 1) + (1− zn,i)xn,i

)

ξ
T
k =

N
∑

n=1

γk(n)

σ2
k,i

(1− zn,iβk,n,i(1, 1))
(

(w
(c(k))
i )T

)(κ+1)

ξkξ
T
k ,

(16)

while explicit updates can be found for πk,i and h
(c(k))
i :

(πk,i)
(κ+1) =

∑N

n=1 γk(n)zn,iβk,n,i(1, 1)
∑N

n=1 γk(n)
(17)

(

h
(c(k))
i

)(κ+1)

=
1

σ2
k,i

∑N

n=1 γk(n) (1− zn,iβk,n,i(1, 1))

N
∑

n=1

γk(n)

[

(1− zn,i)(xn,i − µ̂k,i)
2
βk,n,i(0, 0)

+ zn,i

(

I2(λ
(κ)
k,i )

I0(λ
(κ)
k,i )

− 2
I1(λ

(κ)
k,i )

I0(λ
(κ)
k,i )

µ̂k,i + µ̂
2
k,i

)

βk,n,i(0, 1)

]

. (18)

Here, βk,n,i(d, z) = P (dn,i|z(xn,i), λ
(κ)
k,i ), similar as in Sec-

tion 2.1.

As can be seen in equations (16) and (18), the dropped or cen-

sored data also contribute to the estimates, besides the observable

ones. If there are no censored and dropped data, then βk,n,i(0, 1) =
1 and βk,n,i(1, 1) = 0, and the equations reduce to the re-estimation

formulas for W and H given in [11].

4. REGRESSION CLASSES

The above formulas have been derived for the general case of mul-

tiple transformation matrices. This allows for the user locations to

form regression classes, where all positions in the same regression

class share the same transformation, while the PDFs corresponding

to positions in other regression classes transform differently.

A critical issue is how to define the regression classes, within

which the parameters of all positions change in the same manner.

Here we assume that locations with similar mean RSSI values trans-

form in the same manner, irrespective of the actual identity of the

access points, as long as they operate in the same frequency band.

We thus conduct a k-means clustering of the mean vectors µk of the

PDFs of all positions ℓk to obtain C clusters.

5. EXPERIMENTAL RESULTS

5.1. Classification on Artificial Data

In a first set of experiments we generated artificial data to assess the

impact of the drop-out rate and the amount of adaptation data on the

classification performance.

We generated 1000 samples of training data for each of K = 6
positions and for NAP = 2 access points. We then assumed a sin-

gle affine transformation of the means of the training data for each

location according to µ̂k = Aµk + b, where A = (0.9, 0; 0, 0.9)
and b = [−3, 2]T . Adaptation and test data were then generated

by sampling from the transformed GAUSSIANs with means µ̂k and

variances as those of the training data. While the amount of adapta-

tion data was gradually increased from 1% to 5, 10, 50 and 100% of

the number of training samples, the number of test samples was fixed

at 100 observations per position. We experimented with a drop-out

rate of 0% (no drop-outs, π = 0) and 20% (π = 0.2).



Table 1. Classification results (% positions correctly classified)

when training and test data are generated from same parameter set

Aware of dropping yes no

π = 0 86 86

π = 0.2 75 64

Table 2. Adaptation performance (% positions correctly classified)

on artifical data as a function of amount of adaptation data

No. Pos π 0% 1% 5% 10% 50% 100%

3 0 68 81 85 85 86 86

0.2 56 70 73 74 75 75

6 0 68 85 86 86 86 86

0.2 56 72 75 75 75 75

Table 1 discusses the impact of the drop-out rate without adap-

tation. Here, the ’adaptation’ data were used for a completely new

training from scratch for each of the 6 positions. It can be seen

that the parameter estimation formulas derived in Section 2 are able

to cope with an unknown drop-out rate, which is estimated (aware

of dropping: yes), while assuming absence of drop-outs (aware of

dropping: no) leads to clearly inferior classification accuracy if in-

deed drop-outs occurred.

Table 2 demonstrates the effectiveness of applying the proposed

adaptation algorithms. We can notice that when the number of adap-

tation data per position is small, i.e., less than 10%, classification

results using 6 positions with adaptation data are about 1 to 4% bet-

ter than those when adaptation data are only available for 3 positions.

The column with 0% of adaptation data shows the results when no

adaptation is performed. Comparing with the results of Table 1 it is

clear that the classification results after adaptation approach those of

retraining, except when there is only 1% of adaptation data, even if

adaptation data are only available for 3 out of 6 positions.

5.2. Classification on Field Data

We conducted measurements on 3 floors of an office building with

roughly 30 rooms (lecture halls, office and laboratory rooms), where

each floor has an overall size of 35m by 35m, RSSI values were

taken at 60 different positions with an average distance of 5.0m be-

tween 2 positions. 200 measurements were taken per position with

2 different smartphones at each position. The data of the first smart-

phone was used to estimate the training models while data from the

second smartphone was divided into 2 sets at each position, the first

being used for adaptation (0, 5, 25, or 75 samples) or retraining (190

samples) from scratch and the second for testing (10 samples). For

the measured data, the estimated dropping rate averaged over all APs

and all positions was approximately 0.3.

For the adaptation procedure, we sorted the estimated training

means at each position in descending order, and used only the 8
strongest APs to estimate the adaptation matrices since the contri-

bution of the remaining APs to the likelihood was negligible. The

adaptation matrices are then used to calculate the adapted parame-

ters of the 8 strongest APs at all positions being in the same cluster.

Table 3 shows the dependency of the positioning accuracy on

the number of locations for which adaptation data are available and

the amount of adaptation data. The results in Table 3 are the average

of the root mean square (RMS) positioning error of 50 experiments.

In each experiment, test data, adaptation data and the positions with

adaptation data are randomly selected. As expected, the more posi-

tions there are with adaptation data and the more adaptation samples

per positions, the better the positioning results.

Table 3. RMS positioning error (in [m]) as a function of the amount

of positions having adaptation data and the amount of adatation data

Condition Adaptation Method

No. Pos with No. adapt. µ & σ2, µ only, µ only,

adapt. data data A full A full A diag

0 6.15

15

5 5.08 4.76 3.93

25 4.60 4.41 3.93

75 4.62 4.52 3.93

30

5 3.86 3.96 3.84

25 3.82 3.96 3.85

75 3.76 3.91 3.85

60

5 3.74 3.93 3.84

25 3.67 3.87 3.83

75 3.65 3.87 3.84

retrain 2.43

Table 4. Effect of number of clusters on RMS positioning error

No. of clusters 1 2 3

RMS pos. error [m] 3.76 3.48 3.25

For all considered adaptation methods, improvements in posi-

tioning accuracy are obtained, even when very few adaptation data

available. However, mean and variance adaptation with a completely

filled matrix A delivers only the best results if there are sufficiently

many adaptation data, while the use of only mean adaptation with

a diagonal A is superior if only few adaptation data are available,

since fewer parameters need to be estimated.

However, positioning accuracy when all 60 positions have adap-

tation data is still well below the accuracy achievable, when training

and test data are collected by the same smartphone, which is 2.43m.

Next we measured the impact of multiple regression classes. Ta-

ble 4 shows the positioning results when doing clustering before

(mean and variance) adaptation, assuming that in each cluster 50%
of positions have adaptation data with 75 adaptation samples per

position. It has to be noted that the optimal number of regression

classes depends on the amount of adaptation data available. The

more adaptation data the more transformation matrices can be reli-

ably estimated. In our setup the best results were achieved with 3
clusters, which led to a reduction of the RMS positioning error from

3.76 to 3.25m.

6. CONCLUSIONS

In this paper we have developed a method for adapting trained mod-

els of RSSI measurements to the specifics of the testing WiFi device

within the MLLR framework. Parameter estimation formulas have

been derived both for mean and variance adaption. They account for

the facts that part of the data may be censored since they are below

the reception threshold of the WiFi chipset and that data are dropped

at an unknown rate, probably due to limitations of the software. Fur-

ther, we proposed to cluster the potential user positions in multiple

regression classes, where positions in the same regression class share

their adaptation parameters, thus gaining flexibility in modelling the

deviation of test data from training data. The performance of the

algorithms was first validated on artificially generated data and then

on real field data of an experimental indoor positioning system. Im-

provement in positioning result was observed, and the effectiveness

of using multiple regression classes was demonstrated.
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