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Abstract

We present a semantic analysis technique for spoken input us-
ing Markov Logic Networks (MLNs). MLNs combine graphi-
cal models with first-order logic. They are particularly suitable
for providing inference in the presence of inconsistent and in-
complete data, which are typical of an automatic speech rec-
ognizer’s (ASR) output in the presence of degraded speech.
The target application is a speech interface to a home automa-
tion system to be operated by people with speech impairments,
where the ASR output is particularly noisy. In order to cater
for dysarthric speech with non-canonical phoneme realizations,
acoustic representations of the input speech are learned in an
unsupervised fashion. While training data transcripts are not
required for the acoustic model training, the MLN training re-
quires supervision, however, at a rather loose and abstract level.
Results on two databases, one of them for dysarthric speech,
show that MLN-based semantic analysis clearly outperforms
baseline approaches employing non-negative matrix factoriza-
tion, multinomial naive Bayes models, or support vector ma-
chines.

Index Terms: Unsupervised learning, Acoustic units, Speech,
Markov Logic Networks, Semantic frame

1. Introduction

Semantic analysis is the task of learning a mapping from spoken
or written language to a semantic representation, and thus dis-
covering the meaning of an utterance. One of the approaches
that are largely used in natural language processing (NLP)
to represent meanings is based on semantic frames. Seman-
tic frames are composed of slots, which represent specific at-
tributes of the spoken utterance. The task here is three-fold [1]:
1) target word detection finds semantically relevant words in an
utterance; ii) frame classification classifies the input utterance
into frames that correspond to an action or a domain of interest;
and iii) slot filling finds the slot values that correspond to frame
attributes of the input utterance [2].

While semantic analysis in NLP assumes processing of
typed input (written language), we are interested in determining
the meaning of a spoken utterance, where we also have to deal
with the inaccuracies of acoustic recognition. A straightforward
way to solve this problem is to use an automatic speech recog-
nizer (ASR) that transforms spoken input into word sequences
and then apply the techniques already developed for processing
written language. However, spoken language is rather spon-
taneous and often doesn’t follow the grammar of a language.
Moreover, ASR will inevitably introduce recognition errors.
Therefore it is necessary to adapt the natural language seman-
tic analyser to cope with the problems of spoken language. An

excellent survey of techniques for the integration of ASR and
spoken language understanding can be found in [3].

For the target application considered here, a speech inter-
face to a home automation system for speech-impaired users,
off-the-shelf speaker-independent ASR is known to fail, be-
cause pronuncations of dysarthric speech deviate from the stan-
dard [4]. One approach that proved successful and that avoided
the labeling of the speaker-dependent training data and the ne-
cessity of a pronunciation lexicon is the “’self-learning vocal in-
terface” described in [5, 6]: In the training session the user can
choose the words freely by which an action of a home automa-
tion system is to be evoked. Only weak supervision is required,
i.e., a label which encodes the semantics of an utterance, while
no literal transcription of the user’s utterance is required. The
spoken input is represented by Gaussian posteriorgrams and
Non-negative Matrix Factorization (NMF) is used to learn the
mapping of utterances to actions.

To keep these benefits we will also bypass word recognition
here. The input speech is decoded into a subword unit sequence,
where the subword unit models are learnt in an unsupervised
fashion as decribed in [7]. However, we developed quite a dif-
ferent approach to map the subword unit sequence to semantics.
We propose to use Markov Logic Networks (MLNSs), which are
a natural choice, since the mapping rules can easily be repre-
sented using first-order logic [8]. MLNs have recently been
used in different areas of NLP, such as semantic role labelling
[9, 10], word sense disambiguation [11], natural language un-
derstanding [12, 13] and unsupervised semantic parsing [14].
Contrary to previous work which was done on clean text tran-
scriptions, we propose to use MLNs for the task of semantic
analysis on noisy input, i.e. mappings to meaning represen-
tations directly from spoken utterances. Although Kennington
and Schlangen in [15] use MLNs for situated incremental nat-
ural language understanding from the noisy input coming from
the output of the ASR, beside the speech they use additional in-
formation in the form of discourse context (previous action) and
situational context (the current state of the game for the Pen-
tomino game domain), which requires additional annotations.
We use only the acoustic representations obtained from the raw
speech.

We perform experiments in two domains, a home automa-
tion task for speech impaired people (DOMOTICA 3) and a vo-
cally guided card game patience (PATCOR) [16].

The remainder of the paper is organized as follows. Section
2 gives a brief overview of the MLN framework. Section 3
describes the acoustic representation of the speech. The speech
corpora are presented in Section 4. Section 5 describes in detail
the experimental setup, followed by results and discussion in
Section 6 and concluding remarks in Section 7.



2. Markov Logic Networks

Markov Logic Networks are a statistical relational learning
technique that combines undirected graphical models (Markov
networks) and logical reasoning (First-order logic). First-order
logic (FOL) formulae are used to define the relations between
task elements. By attaching weights to the FOL formulae these
relations can be transformed into Markov networks to create
statistical models of the task [17]. The probability distribution
over a set of random variables X = (X1, X, ..., X5,) that cor-
respond to the groundings of the predicates in FOL formulae is
given as:

P(X:x):%exp Sw S @ |,
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where F' is the total number of FOL formulae, w; are weights,
G; are groundings of the FOL formulae f; and g(x) is a bi-
nary function that takes the value 1 if the grounding of the FOL
formula is true and 0 otherwise. Hence, the sum >_ . g(z)
simply counts the true groundings of f; given the current truth
assignment of X, where grounding refers to assigning constants
to variables. Z is a normalizing term obtained by forcing the
probabilities to sum up to unity. Weights are typically learned
from training data. We used the Alchemy 2.0 engine [18] for
learning the weights discriminatively using the rescaled conju-
gate gradient algorithm, while the inference in MLN was per-
formed using the MC-SAT algorithm [19].

3. Acoustic Representation

In order to learn the mappings to semantic representations di-
rectly from the raw speech, we employ an intermediate acoustic
representation of the spoken input in terms of subword units,
called Acoustic Unit Descriptors (AUDs). AUDs have been
originally developed for the semantic analysis of multimedia
content [20, 21], but then were adapted to the unsupervised
learning of speech representations. Each AUD is modeled by a
3-state left-to-right Hidden Markov Model (HMM) with Gaus-
sian mixture output densities. HMM training of models for the
AUDs is done in a completely unsupervised fashion. They are
similar to the self-organizing units described in [22].

It has been shown in [23] that AUDs are able to capture
acoustically consistent phenomena and represent recurring pat-
terns of feature vectors, and furthermore that they are compet-
itive to other unsupervised acoustic learning techniques. For
more details about the learning of the acoustic representation
the reader is referred to [24].

4. Datasets

For our experiments, we used task-oriented conversational data
from the DOMOTICA 3 home automation domain and the PAT-
COR card game domain, collected in the framework of the AL-
ADIN project [25].

4.1. DOMOTICA 3

The DOMOTICA 3 speech corpus contains recordings of
dysarthric speakers controlling a home automation system. The
language of the corpus is Belgian Dutch. The corpus was col-
lected in a Wizard-of-Oz study, where the subjects were asked
to command 26 distinct actions for the home automation sys-
tem, which was simulated in a 3D computer animation to ensure
an unbiased choice of words and grammar by the user [16].

The total length of the dataset used in our experiments is
approximately 4 hours of speech, with 2055 utterances spoken
by 9 speakers, 228 per speaker on average. According to speech
intelligibility scores obtained using an automated tool [26], all
except two speakers were considered to utter dysarthric speech.

A typical command in DOMOTICA 3 is: ALADIN lichten
in de woonkamer en keuken uit (ALADIN turn off the lights in
the living room and kitchen). While the commands are fairly
short, the major challenge of the dataset is the fact that pronun-
ciation of dysarthric speakers deviates from the non-impared
ones: rate of speech is lower, segments are pronounced differ-
ently, pronunciation is less consistent [4].

4.2. PATCOR

The PATCOR speech corpus contains recordings of non-
pathological, normal speaking subjects playing a vocally guided
card game patience (solitaire). The language of the corpus is
Belgian Dutch. The average number of moves per game ses-
sion is 55 [16]. The total length of the dataset is approximately
3 hours and 20 minutes, with 1912 utterances spoken by eight
speakers, 239 per speaker on average.

A typical command in PATCOR is: De harten boer op de
klaveren dame (Put the Jack of hearts on the Queen of clubs).
Note the importance of the order of words here, where the
change of word order would change the meaning of the utter-
ance. Note also that commands such as: De zwarte dame naar
de rode heer (Put the black Queen on the red King) are present
in the dataset, where clearly ambigious mappings are possible
for both the black Queen (spades or clubs) and the red King
(hearts or diamonds). An additional challenge is the use of syn-
onyms (e.g. Koning and Heer may refer to the same card).

5. Experimental Setup

Our task is to determine a mapping from a spoken utterance to
a semantic representation given in the form of semantic frame,
where the frame structure is known in advance for the domain
under consideration. The utterances are decoded into a se-
quence of AUDs, which are then mapped to semantic frames.

‘We present the experimental setups for the PATCOR dataset
in detail, but employ an analogue approach to the DOMOT-
ICA 3 dataset. The semantic frame structure for the PATCOR
dataset is shown in Table 1. There are two possible frames:
DealCard that takes no slots or slot values, and MoveCard that
consists of six possible slots, each of them being composed of
slot values. Not all the slots need to be inferred for each com-
mand. An example mapping from the spoken command to the
corresponding semantic frame is given in Fig. 1. First we de-
termine an acoustic representation of the spoken utterance in
terms of the AUD sequence. Furthermore, we define a rule
that maps the AUD sequence to a semantic frame, in this ex-
ample MoveCard(< FromSuit >, < FromValue >, <
TargetSuit >, < TargetValue >). We present several dif-
ferent setups for our experiments.

5.1. Setup1

For the setup 1 we define a set of first-order clauses for the map-

ping of AUD sequences to semantic frames:
HasAUD(+a,u) => FromSuit(+s,u)
HasAUD(+a,u) => FromValue(+v,u)
HasAUD(+a,u) => TargetSuit(+s, u)



Table 1: PATCOR semantic frame structure

Frame Slot Slot value
FromSuit spades,diamonds,hearts,clubs
FromValue 1,2,3,...,13
MoveCard TargetSuit spades,diamonds,hearts,clubs
TargetValue 1,2,3,...,13
FromFoundation 1,2,3,4
TargetFoundation 1,2,3,4
DealCard {} {}
HasAU D(+a,u) => TargetValue(+v,u)
HasAUD(+a,u) => FromFoundation(+f, u)
HasAUD(+a,u) => TargetFoundation(+f, u)
HasAUD(+a,u) => DealCard(u)

where s € {spade, diamond, heart, club}, v € {1,...,13}
and f € {1,2,3,4}. The HasAU D(a, u) predicate is an ev-
idence predicate, which states that a particular AUD a is part
of the AUD sequence (utterance) u. Since we want to ac-
count for the co-occurrence of the successive AUDs, we let a
be AUD bigrams as well. The predicates at the right side of
the implication operator define the mapping of the AUD se-
quence u to a particular slot value. The + operator is a per con-
stant operator that produces a separate clause for each combi-
nation of a (AUD unigram or bigram) and slot value. A sep-
arate weight is also learned for each clause obtained in this
way. A part of the grounded MLN for one AUD belonging
to the utterance u is presented in Fig. 2. Each node in this
graph is a ground predicate obtained by assigning constants
(e.g. spades,diamonds, hearts, clubs) to variables (e.g. s)
in the FOL formulas above. An arc connects each two ground
predicates that appear together in one grounding of a formula.

Finally, we infer the probabilities of mapping the AUD se-
quence to each of the slot values given in Table 1. The slot
value with the highest probability is chosen for every slot, how-
ever only if it is higher than a predefined threshold; hence not
all the slots need to be inferred for a semantic frame. For
the example given in Fig. 1 slots FromFoundation and
TargetFoundation stay below the threshold and hence these
are not inferred.

5.2. Setup 2

We use the same set of FOL clauses as in setup 1 to define map-
pings, however, we introduce one additional null slot value N
for each slot in Table 1, which is assigned to an utterance in
the training dataset when there exists no mapping to a particular
slot.

A major difference compared to setup 1 is the inference
part; there is no need to use the threshold anymore, since all
the slots are inferred for each semantic frame. However, we
know that slots which are mapped to null slot value N shouldn’t
be inferred in the first place, so they are dropped before the
evaluation.

5.3. Setup 3

In this setup mappings are learned in a hierarchical way, using
a two-step approach. The first step defines the mappings of the
AUD sequences to slots, which can be realized using a MLN

Audio signal Klaveren twee op klaveren aas

CC BH AD AAI G GH FI AC DA E BF CE AB

Acoustic Units A3 £ cc BH AD F AF 13 AC CD AAH H A

Semantic frame MoveCard(clubs,2, clubs,1)

Figure 1: Example mapping from the input speech to the seman-
tic frame via an AUD sequence for PATCOR dataset

u={CCBH AD AAI G GH FI AC DA E BF CE AB AJI ECC BH AD F AF IJ AC CD AAH H A}

FromSuit(Spades,u) FromValue(1,u)

DealCard(u) FromValue(13,u)

Figure 2: A part of the grounded MLN for one AUD (CC) be-
longing to the utterance u

with a single clause:
HasAUD(+a,u) => Command(+s, u)

where s € { FromSuit, FromV alue, TargetSuit, Target—
Value, FromFoundation, Target Foundation, DealCard}.
After the inference is completed, the AUD sequences are di-
vided into classes; one class per each inferred slot.

In the second step a separate MLN is constructed for each
slot, which defines mappings of AUD sequences (extracted in
the first step) to slot values that belong to the particular slot. As
the inference is done separately, the obtained mappings for all
the slots are joined before the evaluation.

6. Results and Discussion

For the evaluation we use the five-fold cross-validation proce-
dure as in [27], where the dataset is partitioned into five sub-
sets, four of them being used for training and the remaining
one for testing. The cross-validation procedure is repeated 5
times (folds), with each of the subsets used exactly once as the
test dataset. The performance measure is then averaged over all
folds. As a performance measure we use the slot F-score, which
is the harmonic mean of slot precision and slot recall. Slot pre-
cision is the number of correctly filled slots divided by the total
number of filled slots in the induced semantic frame, while slot
recall is defined as a number of correctly filled slots divided by
the total number of filled slots in the reference semantic frame.

‘We use three baselines to compare the proposed MLN se-
mantic analysis approach with. The first one is based on NMF,
where the input speech is decomposed into recurrent acoustic
patterns represented as AUDs, that are linked to semantic repre-



Table 2: F-scores for different setups (PATCOR dataset)

Speaker 1 2 3 5 6 7 8 Average
# Utterances 274 169 260 221 247 223 240 239
Baseline: NMF 66.1 | 693 | 76.2 | 559 | 909 | 54.7 77 48.5 67.3
Baseline: MNB 61.8 | 81.6 | 74.7 86.5 | 56.7 | 72.7 | 483 68
Baseline: SVM 59.7 80 77.8 | 57.5 | 89.4 | 499 | 659 | 45.1 65.7
MLN: Setup 1 66.3 | 829 | 80.6 | 651 | 914 | 54.8 | 79.1 | 56.5 72.1
MLN: Setup 2 684 | 856 | 83.6 | 674 | 945 | 65.1 | 81.4 | 56.1 75.3
MLN: Setup 3 68.4 83 832 | 67.6 | 93.5 | 66.1 | 822 | 56.2 75
MLN: Transcriptions | 77.6 | 91.6 | 94.6 | 832 | 97.6 78 96.5 | 66.6 85.7
Table 3: F-scores for different setups (DOMOTICA 3 dataset)
Speaker 17 28 29 30 31 34 35 41 44 Average
# Utterances 347 204 174 198 225 331 268 144 164 228
Baseline: NMF 96.3 82 945 | 87.6 | 743 | 90.2 | 94.6 | 86.8 | 93.3 88.8
Baseline: MNB 94.1 | 793 | 88.8 | 852 | 73.8 | 91.4 | 953 | 86.2 96 87.8
Baseline: SVM 97.6 | 76.6 | 93.5 | 86.1 | 73.3 93 974 | 852 | 95.8 88.7
MLN: Setup 1 98.5 | 90.6 97 92.1 | 83.1 | 96.2 | 98.8 | 91.6 | 98.8 94.1
MLN: Setup 3 98.2 90 96.6 90 81.5 | 96.7 | 98.8 | 91.8 99 93.6
MLN: Transcriptions | 100 100 100 100 100 100 100 100 100 100

sentations. This process is weakly supervised by labeling each
utterance’s acoustic representation in the training dataset with
slot values to which the utterance refers to [27]. Additionaly,
we use a classification approach based on a Multinomial Naive
Bayes (MNB) model [28] and one based on Support Vector Ma-
chines (SVM) [29, 30]. Counts of AUDs unigrams and bigrams
are used as features in MNB and SVM, where the feature value
equals zero if the AUD does not appear in the utterance and
equals the unigram or bigram count otherwise. The dimension-
ality of the feature vector is then reduced and only the 50%
most relevant features for classification are kept, as measured
by a mutual information criterion.

Results for the three different setups in terms of F-scores are
given in Table 2 and Table 3 for the PATCOR and DOMOTICA
3 datasets, respectively. MLN-based semantic analysis utilizing
setup 1 outperforms the baselines for almost all the individual
speakers. On average, we get an absolute improvement in F-
score of over 5% for the DOMOTICA 3 and over 4% for the
PATCOR dataset.

Analyzing the inferred semantic frames we noted that a
significant source of error for the setup 1 was the inference
of unwanted additional slots (e.g. FromFoundation and
TargetFoundation slots in the example shown in Table 1).
It turned out to be very hard to define a reasonable rejection
threshold, which would be a good trade-off between inferred
and rejected slots within a frame. Hence, we employed a dif-
ferent approach (setup 2), where the hard threshold is avoided
by mapping the spoken utterance to a null slot value for all the
unwanted slots during the training phase. In this way we not
only learn to which slots the utterance is mapped, we also learn
to which ones it should not be mapped. This resulted in an addi-
tional absolute improvement in F-score of 3.2% on average for
the PATCOR dataset. Setup 2 was not applied to DOMOTICA
3 since all the slots are always inferred for each frame, hence
no improvement is possible in this way.

We also experimented with a hierarchical learning approach
(setup 3) where we first learn mappings to slots, then subse-

quently for each slot learn mappings to its slot values. Although
the F-scores slightly decrease for both datasets, the major ben-
efit is the fact that the large task can in this way be divided
into smaller subtasks. This relaxes one of the main drawbacks
of the MLNS, i.e., the fact that for large tasks the inference is
potentially very slow [15]. There is also a benefit in terms of
computational complexity in the learning phase: learning time
is decreased by 27%.

Finally, we give F-scores obtained on clean text transcrip-
tions of the spoken utterances, which serve as the upper bound
of what can be achieved on noisy input. Note that for the DO-
MOTICA 3 dataset we obtain an F-score of 100% since the
ground truth mappings are unambiguous. On the other hand,
the performance for the PATCOR dataset is quite a bit lower
due to inconsistencies and inexactness of the speakers.

7. Conclusions

The results presented in this paper show that MLNs are a
promising tool for the task of semantic analysis of spoken lan-
guage, even in the presence of noisy and inconsistent input data.
Coupled with an unsupervised learning of speech representa-
tions the approach is especially applicable to smaller and noisy
domains, such as home automation task for speech-impaired
users where standard ASR techniques do not perform well. The
experimental results show a clear improvement over three base-
line systems. However, a comparision with the F-score achieved
on error-free text transcriptions indicates that there is still sig-
nificant room for further improvement.
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