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Abstract

Noise tracking is an important component of speech enhance-

ment algorithms. Of the many noise trackers proposed, Min-

imum Statistics (MS) is a particularly popular one due to its

simple parameterization and at the same time excellent perfor-

mance. In this paper we propose to further reduce the number of

MS parameters by giving an alternative derivation of an optimal

smoothing constant. At the same time the noise tracking perfor-

mance is improved as is demonstrated by experiments employ-

ing speech degraded by various noise types and at different SNR

values.

Index Terms: speech enhancement, noise tracking, optimal

smoothing

1. Introduction

In the short time Fourier transform (STFT) domain speech is

known to have a sparse representation, i.e., the vast majority of

energy is concentrated in a few time-frequency (TF) slots. It is

this property that is exploited in many speech signal extraction

algorithms, and it is also this property that can be exploited for

estimating the power spectral density (PSD) of the noise. Even

in time intervals, where a person is speaking, TF slots exisit that

have no or negligible speech energy, such that the STFT values

of these slots are governed by the background noise. If the noise

is sufficiently stationary, these TF slots suffice to track the noise

PSD which can then be used in speech enhancement algorithms.

However, a major issue is how to reliably identify those TF

slots in which the noise spectrum can be observed. One way

to track the noise PSD without the necessity of an error-prone

speech presence probability estimation is the famous Minimum

Statistics (MS) approach [1].

The MS estimator is developed on the observation that the

PSD of a noisy speech signal often drops to the noise power

level [2]. To bypass the intermediate time spans with speech

activity the MS algorithm carries out a minimum search on the

smoothed spectrum of the noisy speech, using a causal sliding

window of a certain length. From the found minima an unbi-

ased noise PSD estimate is provided after a bias compensation.

Besides an efficient realisation of the minimum search and a so-

phisticated calculation of the bias compensation factor, a third

key component of the MS approach is an analytical derivation of

the optimal smoothing parameter to be used for smoothing the

noisy speech spectrum before the minimum search is applied.

A recursive averaging of the PSD of the noisy speech is

also done in many other state-of-the-art noise trackers [1–8].

Most of them consider the noise PSD as an unknown but fixed

parameter, rather than a random variable.

In this contribution we treat the noise PSD as a random vari-

able and employ Bayesian estimation. The update equations

for the maximum a posteriori or minimum mean squared er-

ror estimates result in a recursive averaging, thus giving a nice

statistical derivation and interpretation of the smoothing opera-

tion mentioned above. This derivation also delivers the optimal

time-variant smoothing parameter, however only for the case of

a constant noise PSD. It needs to be adjusted for the practical

case of a time-variant noise PSD, for which we also propose a

solution.

In [1] a different derivation of the smoothing parameter is

given. The noise PSD is treated as a deterministic parameter,

which is estimated in the Maximum Likelihood sense. The opti-

mal smoothing parameter is derived analytically from the statis-

tics of the noisy observations. However, it exhibits some issues,

such as a so-called dead lock for values of the a posteriori SNR

close to one and poor performance of the noise tracking in high

levels of nonstationary noise. For these issues heuristic solu-

tions are given in [1]. Here we show that the new derivation

based on Bayesian estimation mitigate these issues.

The paper is organized as follows. In the next section we

introduce the statistical modeling and present the smoothing of

the observed noise PSD as a consequence of Bayesian estima-

tion of a constant, however, random noise PSD. In Section 3 we

consider the practical case of time-variant noise statistics and

adjust the smoothing parameter derived in the Section 2 cor-

respondingly. We then compare its behavior with the solution

given in [1]. Experimental results on noise tracking and speech

enhancement are presented in Section 4, before we conclude the

paper in Section 5.

2. Statistical modelling

2.1. ML estimation of noise PSD

The STFT coefficients of the clean speech signal Sℓ,k and of

the noise signal Nℓ,k at frame number ℓ and frequency bin k are

modelled as uncorrelated complex-valued zero-mean normally

distributed random processes with statistically independent real

and imaginary parts. In this case an additive superposition of the

two signals results in an exponentially distributed power spec-

tral density of the noisy speech |Yℓ,k|
2 = |Sℓ,k|

2 + |Nℓ,k|
2. Its

probability density function (PDF) is given by:

p|Yℓ,k|
2(x;λY,ℓ,k) =

1

λY,ℓ,k
· exp

(

−
x

λY,ℓ,k

)

, (1)

where λY,ℓ,k = E{|Yℓ,k|
2} = λS,ℓ,k + λN,ℓ,k, and where

λS,ℓ,k = E{|Sℓ,k|
2} and λN,ℓ,k = E{|Nℓ,k|

2} are the speech

and noise variances. The goal of a noise tracker is to estimate

λN,ℓ,k from the observed noisy spectrogram |Yℓ,k|
2. Since the

PSD estimator treats each frequency component identically and

independently of the others, we will drop the frequency bin in-

dex k in the following.

The noise PSD estimation is especially challenging in the

presence of speech and if the noise is nonstationary. On the

other hand, in the absence of speech, i.e., if λY,ℓ = λN,ℓ and



if the noise is stationary λN,ℓ = λN for a certain number L of

consecutive observations, the unbiased Maximum Likelihood

(ML) estimate of the noise PSD is simply given by the sample

mean λ̂ML
N = (1/L) ·

∑L
ℓ=1

|Yℓ|
2 with var

(

λ̂MS
N

)

= 2λ2
N/L.

Although in the ML estimation the true noise PSD λN is

treated as an unknown but fixed parameter, the estimate λ̂ML
N is

a random variable, since it is a function of the random observa-

tions |Yℓ|
2. It has a scaled chi-squared (χ2

s) PDF:

pλ̂ML
N
(x; ν, τ 2) =

(τ 2ν/2)ν/2

Γ(ν/2)
xν/2−1 exp

(

−x · τ 2ν/2
)

(2)

for x > 0 and zero else. Here, ν > 0, τ 2 = 1/λN > 0
and Γ(·) denote the degrees of freedom, the inverse of the noise

variance λN and the gamma function, respectively. It is worth-

while noting, that due to the signal processing steps in the STFT

computation the degrees of freedom parameter should be usu-

ally reduced according to ν ≈ L/a for the DC and the Nyquist

frequency and otherwise ν ≈ 2L/a, where a is a function of L
and of the STFT parameters such as the type of analysis window

and the frame length [2].

Rather than using the λ̂ML
N estimate a common estimation

technique in noise PSD tracking is a first-order recursive aver-

aging over the past noisy PSDs, assuming speech absence:

λ̃N,ℓ = αℓ · λ̃N,ℓ−1 + (1− αℓ) · |Yℓ|
2

(3)

using a smoothing parameter αℓ. While the noise PSD estima-

tors in [2–5] apply a constant smoothing parameter αℓ = α,

other sophisticated algorithms as in [1, 6–8] use a time-variant

smoothing parameter. Similar to the sample mean λ̂ML
N , the es-

timate λ̃N,ℓ in (3) can be also approximately modelled to be

a χ2
s distributed random variable with appropriate degrees of

freedom νℓ dependend on αℓ.

In the MS approach the smoothed noisy speech according

to eq. (3) is the input to the minimum search algorithm.

2.2. Bayesian estimation for stationary noise

We new treat the sought-after noise PSD λN as a random vari-

able which we seek to estimate by means of Bayesian estima-

tion. For the exponentially distributed observations, see eq. (1),

the scaled inverse chi-squared (χ2
si) distribution is a conjugate

a priori distribution in speech absence. For x > 0 it is given by:

pλN
(x; ν, τ 2) =

(τ 2ν/2)ν/2

Γ(ν/2)
x−ν/2−1exp

(

−
τ 2ν/2

x

)

, (4)

where ν > 0 and τ 2 > 0 denote the degrees of freedom param-

eter and the scale parameter, respectively.

For this conjugate prior the update equations for the hy-

per parameters degrees of freedom and scale are given by:

νℓ = νℓ−1 + 2, (5) τ 2
ℓ =

2

νℓ
|Yℓ|

2 +
νℓ−1

νℓ
τ 2
ℓ−1, (6)

where {νℓ−1; τ
2
ℓ−1} and {νℓ; τ

2
ℓ } are the parameters of the a

priori and a posteriori distributions, respectively. To get a de-

sired recursive equation we need to condense the posterior PDF

to a point estimate. The most popular are the mode and the

mean of the posterior resulting in the maximum a-posteriori

(MAP) and minimum mean squared error (MMSE) estimates:

λ̃MAP
N,ℓ =

τ 2
ℓ νℓ

νℓ + 2
(7) λ̃MMSE

N,ℓ =
τ 2
ℓ νℓ

νℓ − 2
. (8)

We summarize the two equations in a single one via

λ̃N,ℓ =
νℓ

νℓ +∆ν
· τ 2

ℓ , (9)

which for ∆ν = 2 gives the MAP estimate and for ∆ν = −2
the MMSE estimate of the noise PSD.

Using (5) and (9) in (6) results in the recursive equation:

λ̃N,ℓ =
νℓ−1 +∆ν

νℓ−1 +∆ν + 2
· λ̃N,ℓ−1 +

2

νℓ−1 +∆ν + 2
· |Yℓ|

2.

(10)

By comparison of (3) and (10) the smoothing parameter αℓ of

Bayesian recursion turns out to be a function of νℓ−1 and ∆ν:

αℓ =
νℓ−1 +∆ν

νℓ−1 +∆ν + 2
. (11)

According to (11) αl ∈ (0; 1) is guaranteed for all νℓ−1 > 0, if

∆ν > 0. For ∆ν < 0, it should be ensured that νℓ−1 ≥ ∆ν.

In the Bayesian estimation a small value of αℓ means, that the

estimator does not rely on its a-priori knowledge and that the

current observation |Yℓ|
2 is more emphasized. Otherwise, if αℓ

is close to 1, the estimator is confident in its a-priori knowledge

and the observation |Yℓ|
2 is deeply distrusted.

Although the two equations (3) and (10) apply the same

recursive smoothing and λ̃N,ℓ is in both cases a χ2
s distributed

random variables, the modeling of λN,ℓ is quite different. While

in (3) λN,ℓ is treated as an unknown fixed parameter, is it a

χ2
si distributed random variable in (10). The identity of (3) and

(10) is a strong analytical argument for the choice of the χ2
si

distribution as a distribution of λN,ℓ and its practical relevance.

It should be mentioned that the update equation for the de-

grees of freedom parameter in (5) is an appropriate choice for

stationary noise only, and it should be modified for nonstation-

ary noise tracking. For instance in [9] we used a constant de-

grees of freedom νℓ = ν0, that is similar to recursive smoothing

with a constant smoothing parameter like in [2–5]. In this con-

tribution we also drop the update equation νℓ−1 = νℓ−2 + 2
and derive an alternative in the next section.

3. Smoothing for nonstationary noise

As mentioned above in the MS approach, λN,ℓ is treated to be

a deterministic parameter. An optimal smoothing parameter is

analytically derived in [1] for observations containing speech

pauses by minimizing the mean squared error:

αMS-opt

ℓ = argmin
α

E

[

(

λ̃N,ℓ − λN,ℓ

)2
∣

∣

∣

∣

λ̃N,ℓ−1

]

. (12)

This results in a smoothing constant that is a function of the

smoothed a posteriori SNR γ̂ℓ:

αMS-opt

ℓ =
1

1 + (γ̂ℓ − 1)2
, (13) γ̂ℓ =

λ̃N,ℓ−1

λN,ℓ
, (14)

where in a practical implementation λN,ℓ = λ̂MS
N,ℓ−1 is used,

employing the noise PSD estimate λ̂MS
N,ℓ−1 obtained from the

conventional MS approach [1]. Note, that αMS-opt

ℓ may take

a very small values, so that λ̃N,ℓ is able to follow the noisy

speech spectrum |Yℓ|
2 even in speech presence, where γ̂ℓ ≫ 1.
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Figure 1: (a) Smoothing parameter αℓ as a function of the smoothed a posteriori SNR γ̂ℓ over logarithmic scale; (b, top figure) sample

noise trajectory for frequency bin 781, 25 Hz (black solid line) and trajectories of smoothed PSD of microphone signal according to

eq. (3) for different smoothing parameters (colored lines). The dahsed line is the bias compensated output of the MS algorithm, which is

used by all smoothing parameter estimators to compute γ̂ℓ; (b, bottom figure) corresponding trajectories of the smoothing parameters.

In Fig.1(a) the green dash-dotted line depicts the optimal

αMS-opt

ℓ as a function of γ̂ℓ from eq. (13). However, there are

two issues with this smoothing parameter [1]. The first is the

so called dead lock problem for γ̂ℓ ≈ 1: if γ̂ℓ ≈ 1, then

αMS-opt

ℓ ≈ 1 and the noise PSD estimate according to eq. (3)

will hardly change and can get stuck at its current value. A

second issue is the limited tracking performance in high levels

of nonstationary noise: for large values of γ̂ℓ ≫ 1, αMS-opt

ℓ will

become very small, λ̃N,ℓ will almost instantly follow the obser-

vations and thus a too large estimator variance is induced.

A third, equally important issue is a weak tracking behav-

ior of αMS-opt

ℓ for 0 < γ̂ℓ < 1 with the theoretical lower bound

αMS-opt

ℓ = 0.5 for γ̂ℓ = 0. This results in a limited ability of

the recursive averaging to follow the noisy speech spectrum for

small power level λ̃N,ℓ < λ̂MS
N,ℓ. Bins with such a low power

level will most likely contain noise only. Tracking of these val-

ues is crucial, since the recursive estimates λ̃N,ℓ are used for the

minimum search in the MS approach, as mentioned above.

Therefore in a practical implementation Martin proposed to

use the suboptimal smoothing parameter αMS
ℓ according to:

αMS
ℓ = max

(

αmax · α
MS-opt

ℓ , αmin(SNR)
)

(15)

with an upper bound αmax = 0.96 and a SNR dependent lower

bound αmin(SNR) calculated for positive values of the overall

signal-to-noise ratios SNR > 0 measured in dB as per:

αmin(SNR) = min
(

0.3 , SNR
− R

0.064·fS

)

, (16)

where R and fS are the frame shift (in number of samples) and

the sampling frequency, respectively [1]. (16) allows αmin to be

smaller than 0.3 for large SNR values. In the Fig.1(a) αMS
ℓ is

depicted by the solid blue curve for αmin = 0.3. Additionally

αMS
ℓ is adjusted according to an error monitoring, that does not

need any parameter and therefore is not taken into account in

the Fig.1(a). It is a heuristic adjustment of the theoretical result

to solve only the first two issues discussed above.

To overcome all mentioned issues with αMS-opt

ℓ we suggest

to control the degrees of freedom parameter νℓ−1 of (11) and

thus the smoothing parameter αℓ by a measure of the instanta-

neous degree of nonstationarity (DN) dℓ according to

νℓ−1 =

{

1/dℓ for ∆ν ≥ 0,

|∆ν|+ 1/dℓ for ∆ν < 0.
(17)

where DN is defined as follows:

dℓ = | ln(γ̂ℓ)|, (18)

which is similar to the measure of degree of nonstationary de-

fined in [10]. In comparision to [10] our definition of DN is

more intuitive and needs no additional parameter. Inserting (18)

and (17) in (11) leads to the proposed smoothing parameter:

αDN
ℓ =







(

1 + 2·| ln γ̂ℓ|
1+∆ν·| ln γ̂ℓ|

)−1

for ∆ν ≥ 0,

(1 + 2 · | ln γ̂ℓ|)
−1

for ∆ν < 0.
(19)

As a function of γ̂ℓ, α
DN
ℓ has a single parameter ∆ν, which

determines, which point estimate is used in (9) either the MAP

or the MMSE estimate. The curves:

αMAP
ℓ =

1 + 2| ln γ̂ℓ|

1 + 4| ln γ̂ℓ|
, (20) αMMSE

ℓ =
1

1 + 2| ln γ̂ℓ|
(21)

are depicted in the Fig.1(a) as dashed lines. It is obvious that

αDN
ℓ = f(γ̂ℓ) avoids the dead lock problem, since its first

derivative ∂αDN
ℓ /∂γ̂ℓ 6= 0 for γ̂ℓ = 1. Its minimum value is cal-

culated to αDN
min = ∆ν/(∆ν+2) for ∆ν ≥ 0 and αDN

min = 0 else.

Moreover the proposed αDN
ℓ is symmetric with respect to the

axis γ̂ℓ = 1 and is able to follow the noisy spectrogram rapidly

not only for large γ̂ℓ > 1 but also for small values γ̂ℓ < 1.

To justify the choice of the proposed function we first

consider stationary noise in speech absence. In this case the

smoothed PSD of the microphone signal is approximately equal

to the noise PSD estimate delivered by the MS approach,

λ̃N,ℓ ≈ λ̂MS
N,ℓ, resulting in γ̂ℓ ≈ 1 according to eq. (14). Con-

sequently dℓ ≈ 0, therefore νℓ−1 → ∞ and the smoothing

parameter αDN
ℓ assumes a value close to 1, which is desired in
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Figure 2: Noise tracking performance of the MS approach

with αMS
l -based and with αMMSE

l -based smoothing in terms of

(a) spectral distance measure (SDM) and (b) logarithmic error

variance (LEV) for 4 noise types of the NOISEX-92 database.

stationary noise. However this is valid for quite a small range of

γ̂ℓ only. For γ̂ℓ 6= 1, αDN
ℓ quickly decreases, and the smoothed

PSD is able to follow changes in the noise spectrum, both for

speech presence and for decaying noise power levels. Further

αDN
ℓ decreases for γ̂ℓ > 1 not as rapidly as αMS-opt

ℓ . So we do

not expect a too large estimator variance and consequently do

not need any lower bound even for αDN
ℓ = αMMSE

ℓ .

In Fig.1(b) trajectories of the noise PSD and the smoothed

PSD of the microphone signal according to eq. (3) are shown

for the different options for the smoothing parameter αℓ, as well

as the trajectories of the smoothing paramters themselves. For

all smoothed PSDs, the same λ̂MS
N,ℓ is used for calculating γ̂ℓ.

The depicted time span can be divided in 3 distinctive parts:

γ̂ℓ < 1, γ̂ℓ ≫ 1 and γ̂ℓ ≈ 1. The main advantage of the pro-

posed smoothed noisy speech PSD trajectories λ̃MAP
N,ℓ and λ̃MMSE

N,ℓ

is their ability to follow the changes of the noise power level for

γ̂ℓ < 1. It is due to the small values of αMAP
ℓ and αMMSE

ℓ , which

can be seen in the bottom picture. This property can be used to

better estimate the noise power floor in the MS approach. For

γ̂ℓ ≫ 1 (power push in noise signal) all αℓ drop to their mini-

mum values and try to follow the rapid changes in noise power.

Bacause of the relative high minimum value of αMAP
min = 0.5,

λ̃MAP
N,ℓ performs not well enough in such time segments. In the

last time interval with γ̂ℓ ≈ 1 the dead lock problem of αMS-opt

ℓ

can be observed: λ̃MS-opt

N,ℓ hardly follows the noise trajectory.

4. Experimental results

The performance of the proposed smoothing parameter αMMSE
ℓ

versus conventional αMS
ℓ is experimentally evaluated employing

speech degraded by various noise types and at global SNR val-

ues varied from -10 dB to 25 dB in steps of 7 dB. The clean

speech signals are generated by concatenating utterances of

male and female speakers from the TIMIT database [11], hav-

ing a total length of 3 minutes. To them the noise signals of
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Figure 3: Improvement of the short-time objectve intelligibility

(STOI) measure ∆STOI=STOIMMSE−STOIMSof the enhanced

signals obtained by using the MS approach with αMMSE
l -based

versus with αMS
l -based smoothing for NOISEX-92 database.

13 different noise types, which were taken from the NOISEX-

92 database [12], were artificially added. All signals are sam-

pled at 16 kHz. The STFT spectral analysis used a Hann win-

dow of 1024 samples length with a frame overlap of 50%.

Since the implementation of the MS approach of [1] was

available, the proposed function αMMSE
ℓ from (21) is simply inte-

grated in the MS implementation. The length of the MS window

for minimum search is set to D = U · V = 96 frames devided

into U = 8 subwindows of the length of V = 12 frames. The

performance of the MS-based noise tracking with either αMS
ℓ -

based or αMMSE
ℓ -based smoothing of the noisy speech PSD is

given in Fig. 2 in terms of the spectral distance measure (SDM)

[13] and logarithmic error variance (LEV) [14], where the true

noise periodogram |Nℓ,k|
2 is used as a reference noise PSD. We

observed that both the estimator errors measured by SDM and

the estimator variances measured by LEV reduced for αMMSE
ℓ -

based smoothing versus the αMS
ℓ -based smoothing for all SNR

values and for all considered noise types of the NOISEX-92

database, of which only 4 representatives are depicted in Fig. 2.

The absolute values and the reductions given in % of SDM and

LEV are the averages over all SNR values.

Further both noise trackers are combined with the

optimally-modified log-spectral amplitude (OM-LSA) estima-

tor to obtain the enhanced speech signals [15]. Fig. 3 shows the

improvement of the short-time objectve intelligibility (STOI)

measure ∆STOI = STOIMMSE − STOIMS of enhanced sig-

nals [16] obtained by using the MS approach with αMMSE
l -based

versus with αMS
l -based smoothing. The improvements for the

NOISEX-92 database are small, however consistent over all

noise types and SNR values. As expected the best over all SNR

values averaged improvements of 2.5% and 2% are achieved

for ’white’ and ’pink’ noise types, respectively.

5. Conclusions

In this contribution we proposed an alternative computation of

the smoothing parameter, which is used to smooth the PSD of

the microphone signal at the input of the Minimum Statistics

based noise tracking. The smoothing parameter is controlled by

a degree of nonstationary measure. Its single parameter, ∆ν, is

chosen to realize an MMSE estimate of the noisy speech PSD.

The experimental evaluation showed that the performance of the

MS-based noise tracking was improved for all noise types of the

NOISEX-92 database and all tested SNR values, compared to

the use of the original smoothing parameter as proposed in [1].
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