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Introduction Vocal interface framework

* Objective: Self learning vocal user interface
> _earn mapping from user's command to action
> Simple training procedure
» Semantic parsing of spoken utterances

e System learns from user interaction examples
e Manual control action translated to semantic frame

e Command recognition using Non-negative Matrix
Factorization

Training

speech signal
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perform action
e Example: “Turn on the light” = turn(on,light)
> User speaks with his own words
> Only semantic frame description provided, no transcription
* Focus: Unsupervised acoustic model training
> Frame based (GMM) and segment based (acoustic units)
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e Supervision matrix V;p indicates presence of slot values

e Observation matrix Vi represents utterances as Histograms
of Acoustic Cooccurrences [Vanhamme, 2008]

e Challenge: Recordings without transcriptions
> Acoustic models have to be learned unsupervised

 Frame based: Vector quantization, GMMs, posteriorgrams
» Each frame is independently analyzed
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* Three steps:
1. Segmentation of the speech signal at change points
2. Clustering of similar segments into acoustic units
3. lterative HMM training of models for the acoustic units

= Delivers a compact representation of an utterance
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Experimental results

* Domotica 3 dataset: 9 speakers (7 dysarthric), 2139
utterances, ~ 4 h speech, 26 distinct commands

e Baseline: Speaker independent phoneme recognition
* Performance measure: slot filling f-score
e Speakers ordered by intelligibility score, normal: 44 and 17

Example representations

e Two utterances of “ALADIN Hoofdeinde op stand 1” Speaker 44 | 17 | 34 | 31 29 28 | 35 | 30 41 |Average
» Acoustic unit sequences: z%%rsnces 19686 35560 35395 23385 15881 23104 25834 22223 13521 25308
AJAEAAACBAFFBJCHHARABARACADBICACFEFADETACHAH AB AR F Gauss.Poster.  99.35/99.7498.76 92.09 99.39 93.99 97.53 93.26 97.95 97.02
AJ AE AA AC B AF FBJ CHAH AB AF AC ADE C HBB F AD E | AC H AH AB AF F AUD sequences | 95.49 96.9290.38 79.88 92.74 76.18 94.31/85.31 90.78 89.49
. . . | AUD/HMM.Poster. 93.03 96.0691.3086.4895.00 79.99 91.3888.66 93.48 90.75
* Posteriorgrams over acoustic units (HMMs): AUD/GMM Poster. 96.29 99.24 97.67 90.50 98.12 89.5195.6593.22 94.58 95.30
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= Acoustic units deliver a consistent representation
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e Unsupervised trained speaker dependent models
outperform generic speaker independent models
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