

Computer Science, Electrical Engineering and Mathematics

Communications Engineering Prof. Dr.-Ing. Reinhold Häb-Umbach

An Evaluation of Unsupervised Acoustic Model Training for a Dysarthric Speech Interface

Oliver Walter¹, Jort F. Gemmeke², Vladimir Despotovic¹, Bart Ons², Reinhold Haeb-Umbach¹ and Hugo Van hamme²

¹University of Paderborn, Germany {walter,despotovic,haeb}@nt.uni-paderborn.de http://nt.uni-paderborn.de/

²KU Leuven, Belgium jort.gemmeke@esat.kuleuven.be http://www.esat.kuleuven.be/psi/spraak/

Introduction

• **Objective:** Self learning vocal user interface Learn mapping from user's command to action

Vocal interface framework

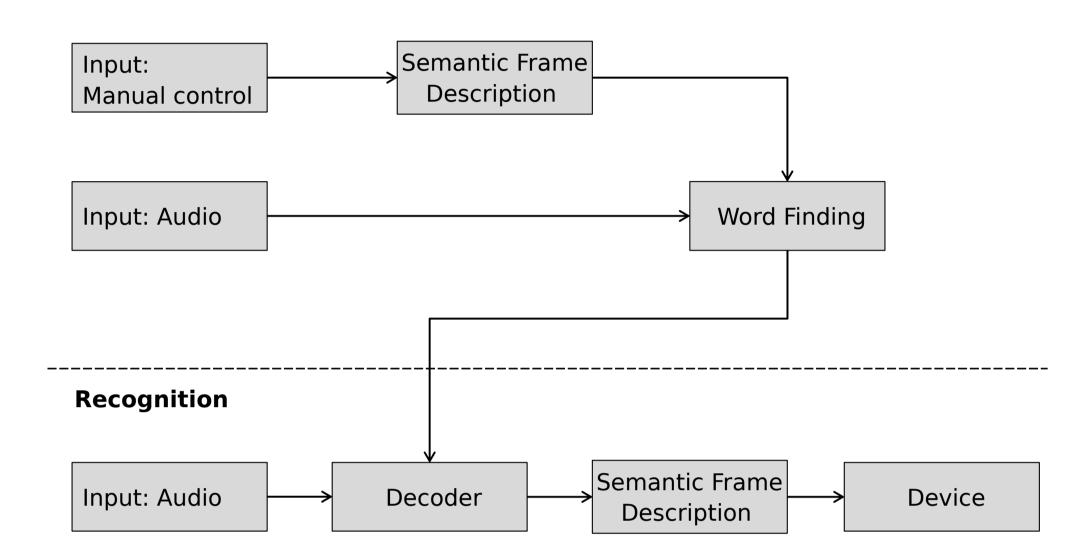
 System learns from user interaction examples Manual control action translated to semantic frame

- Simple training procedure
- Semantic parsing of spoken utterances

speech signal Turn on the light 렀 turn(on,light) semantic inference

perform action

- **Example:** "Turn on the light" \Rightarrow turn(on, light)
 - User speaks with his own words
 - Only semantic frame description provided, no transcription
- Focus: Unsupervised acoustic model training
 - Frame based (GMM) and segment based (acoustic units)


Unsupervised acoustic model training

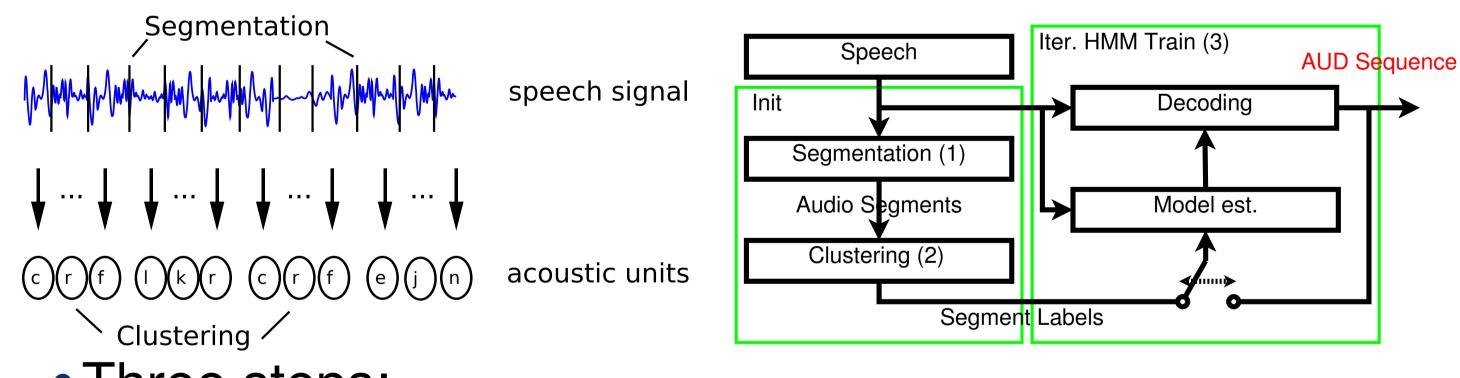
• Challenge: Recordings without transcriptions

- Acoustic models have to be learned unsupervised
- Frame based: Vector quantization, GMMs, posteriorgrams
 - Each frame is independently analyzed

 Command recognition using Non-negative Matrix Factorization

Training

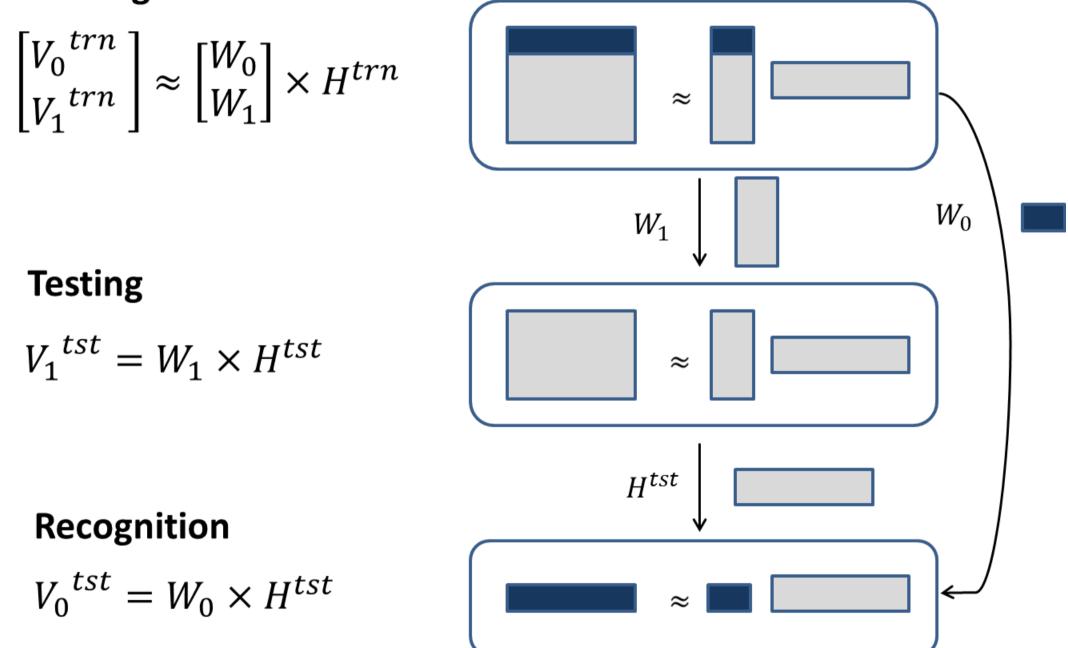
NMF based command recognition


- Supervision matrix V_0 indicates presence of slot values
- Observation matrix V_1 represents utterances as Histograms of Acoustic Cooccurrences [Vanhamme, 2008]

Training

• Segment based: Acoustic units

- Segments of frames are modeled as acoustic units
- Exploits correlations among frames
- Assumes acoustic building blocks


Acoustic unit discovery

• Three steps:

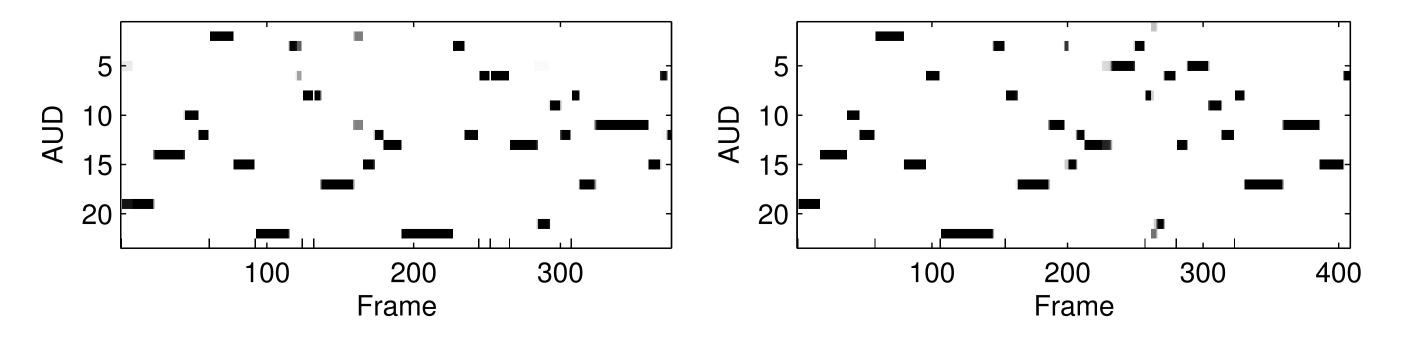
- 1. Segmentation of the speech signal at change points
- 2. Clustering of similar segments into acoustic units
- 3. Iterative HMM training of models for the acoustic units
- \Rightarrow Delivers a compact representation of an utterance

Example representations

Experimental results

- **Domotica 3 dataset:** 9 speakers (7 dysarthric), 2139 utterances, \approx 4 h speech, 26 distinct commands
- Baseline: Speaker independent phoneme recognition
- Performance measure: slot filling f-score
- Speakers ordered by intelligibility score, normal: 44 and 17

Two utterances of "ALADIN Hoofdeinde op stand 1"


• Acoustic unit sequences:

INTERSPEECH 2014, Singapore

AJ AE AA AC B AF F BJ C H H AH AB AF AC AD BJ C AC F F AD E I AC H AH AB AF F

AJ AE AA AC B AF F BJ C H AH AB AF AC AD E C H BB F AD E I AC H AH AB AF F

• Posteriorgrams over acoustic units (HMMs):

 \Rightarrow Acoustic units deliver a consistent representation

Speaker	44	17	34	31	29	28	35	30	41	Average
# Utterances	166	350	335	235	181	214	284	223	151	238
# AUDs	98	56	59	38	58	30	53	22	32	50
Gauss.Poster.	99.35	99.74	98.76	92.09	99.39	93.99	97.53	93.26	97.95	97.02
AUD sequences	95.49	96.92	90.38	79.88	92.74	76.18	94.31	85.31	90.78	89.49
AUD/HMM.Poster.	93.03	96.06	91.30	86.48	95.00	79.99	91.38	88.66	93.48	90.75
AUD/GMM Poster.	96.29	99.24	97.67	90.50	98.12	89.51	95.65	93.22	94.58	95.30
Phone Recogn.	90.75	87.17	78.69	66.32	84.84	54.23	80.99	56.16	64.81	74.70

Conclusions

 Unsupervised trained speaker dependent models outperform generic speaker independent models

DFG Ha3455/9-1, SPP1527. V. Despotovic: EUROWEB scholarship. J. F. Gemmeke: IWT-SBO 100049