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Abstract
In this paper, we investigate unsupervised acoustic model train-

ing approaches for dysarthric-speech recognition. These mod-

els are first, frame-based Gaussian posteriorgrams, obtained

from Vector Quantization (VQ), second, so-called Acoustic

Unit Descriptors (AUDs), which are hidden Markov models

of phone-like units, that are trained in an unsupervised fash-

ion, and, third, posteriorgrams computed on the AUDs. Exper-

iments were carried out on a database collected from a home

automation task and containing nine speakers, of which seven

are considered to utter dysarthric speech. All unsupervised

modeling approaches delivered significantly better recognition

rates than a speaker-independent phoneme recognition baseline,

showing the suitability of unsupervised acoustic model train-

ing for dysarthric speech. While the AUD models led to the

most compact representation of an utterance for the subsequent

semantic inference stage, posteriorgram-based representations

resulted in higher recognition rates, with the Gaussian posteri-

orgram achieving the highest slot filling F-score of 97.02%.

Index Terms: unsupervised learning, acoustic unit descriptors,

dysarthric speech, non-negative matrix factorization

1. Introduction

It is often said that a speech interface, e.g., to control household

devices, is particularly helpful for physically challenged peo-

ple [1, 2]. Unfortunately, a significant fraction of this group of

users also suffers from speech impairments, such as dysarthria,

a motor speech disorder, which makes their speech sound quite

differently compared to speech uttered by people without speak-

ing impairments. As a consequence, off-the-shelf automatic

speech recognition (ASR) systems exhibit unacceptably high

error rates for dysarthric speech [3]. The deviations from nor-

mal speech utterances are usually quite severe and conventional

speaker adaptation approaches, such as Maximum-a-posteriori

(MAP) or Maximum Likelihood Linear Regression (MLLR)

adaption are able to compensate for these deviations to adapt

the acoustic models to some extent to reduce the error rates for

impaired speech. A significant amount of research has there-

fore been devoted to the characterization and recognition of

dysarthric speech [4, 5, 6, 7, 8, 9, 10].
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An alternative to the adaptation of a speaker-independent

system is the training of a speaker-dependent recognizer. This

asks for the availability of labeled training data, i.e., recordings

of the user’s spoken utterances and the corresponding text files,

together with a pronunciation lexicon . In particular in the case

of dysarthric speech, pronunciations can be quite different from

the standard [11, 12, 13, 14], such that the appropriateness of

canonical transcriptions is questionable.

In order to avoid the effort for providing an appropriate pro-

nunciation lexicon and transcribing the training data, the AL-

ADIN project follows a different route [15, 16]. It is concerned

with the development of a self-learning vocal interface for a

home automation system, where the learning of the acoustic

models is done in a ”zero-resource” scenario, requiring neither

the transcription of the training data nor a pronunciation lexi-

con. The user still has to follow a training session, but this is

only to learn the mapping of the user’s commands, which he

can choose freely, to the action to be carried out in the home

automation system. To this end, only weak supervision is re-

quired – an action label assigned to an utterance – while no

literal transcription of the user’s utterance is needed. Thus the

system is maximally adapted to the particular artifacts of the

user’s (dysarthric) speech and to the preferred wording of the

user.

This approach, while attractive to the user, poses several

challenges, such as unsupervised acoustic model training and

the learning of the mapping between the user’s utterance and the

actions to be performed, using only weak supervision. While

the latter has been discussed in [17], where a Non-negative Ma-

trix Factorization (NMF) based approach was employed to ef-

fectively solve the semantic inference problem, this paper is

concerned with the first issue. In the past years several unsu-

pervised acoustic model training methods have been developed,

including Gaussian posteriorgrams [18], hidden Markov model-

based self-organising units [19], and non-parametric Bayesian

estimation of HMMs [20]. In [21] we have adopted a hierar-

chical approach, which has originally been developed for the

semantic analysis of the audio track of multimedia data [22], to

the unsupervised learning of speech representations. On the first

hierarchic layer, we learned Acoustic Unit Descriptors (AUDs),

phone-like units, which are similar to the HMM-based self-

organising units in [19]. The second layer is concerned with

the discovery of word-like units, which manifest themselves as

recurring sequences of AUDs. This approach showed very good

performance on the TiDigits corpus with recognition rates com-

ing close to a supervised training [21].

In this paper we discuss the suitability of unsupervised



acoustic learning approaches for dysarthric speech. We con-

centrate on two representative approaches, Gaussian posterior-

grams computed from MFCC features, and the suprasegmental

AUDs. Furthermore, we will also evaluate posteriorgrams of

AUDs.

The paper is organized as follows: In the next section we

give a brief overview of the vocal user interface developed in the

ALADIN project. In Section 3 we introduce the different fea-

ture representations under investigation. The GMM based pos-

teriorgram is described in subsection 3.1 while the AUD based

representation is given in subsection 3.2. The database is pre-

sented in Section 4, followed by the section on experimental

results. We finish with a discussion and conclusion in section 6.

2. Vocal User Interface

This section gives a brief overview of the architecture of the Vo-

cal User Interface (VUI) that has been developed in the frame-

work of the ALADIN project, e.g. for the purpose of controlling

a home automation system. The main target group are people

who suffer from speech impairment, hence the system should be

able to adapt to voice pathologies [23]. The system is also de-

signed to learn and adapt to unconstrained spoken commands,

where the user can formulate a command in the words of his

choice.

The mapping between the voice command and an action on

the device’s user interface is learned during the training phase.

An action is represented by a semantic frame, a data structure

that is composed of slots, which in turn contain slots or values.

For example, a semantic frame can contain the slots <device>

and <action>, with the corresponding values <television, ra-

dio> and <on, off>, respectively.

During the training phase, recurrent acoustic patterns are

determined from the spoken commands using NMF [15]. NMF

decomposes a non-negative matrix that represents training data

into two lower rank matrices, i.e., a dictionary matrix containing

recurrent acoustic patterns and a matrix of activations of these

patterns. This process is weakly supervised by augmenting the

representation of the user’s utterance with labels indicating the

slot values the utterance is referring to.

During the decoding process the vector describing the

user’s utterance is again decomposed via NMF, and the decom-

position is compared with the trained dictionary, which included

the grounding information. By finding the closest match, an es-

timate of the slot values is obtained. This recognized command

is represented by the semantic frame, and finally sent to the tar-

get device [24].

As the mapping of the input utterance to a user command

is carried out using NMF, each utterance of the user has to be

represented by a vector of fixed size. The compilation and size

of these vectors depend on the acoustic representation of the

utterance, which will be described in the following section.

3. Acoustic Representations

The first step in the audio processing chain is the extraction of

Mel Frequency Cepstral Coefficient (MFCC) feature vectors,

which are augmented with the log energy and first and second-

order temporal difference features to arrive at a 39-dimensional

feature vector. Note that cepstral mean and variance normaliza-

tion is carried out per utterance.

The following different representations of the input

dysarthric speech were learned.

3.1. Gaussian Posteriorgrams

Here, the MFCC feature vector is transformed into a vector of

posterior probabilities of Gaussians forming a codebook, using

soft vector quantization. To this end, a 100 component full-

covariance Gaussian Mixture Model is trained on MFCC vec-

tors. The code book training starts off from a single cluster

describing all training data. It is then split along the dominant

eigenvector of its covariance matrix, followed by iterations of

the Expectation Maximization algorithm. This process is re-

peated until a desired number of mixture components is ob-

tained.

The posterior probability of each Gaussian mixture compo-

nent is then computed for each MFCC vector. From the posteri-

ors so-called histograms of acoustic co-occurrences (HACs) are

constructed. The HAC is an estimate of the joint posterior prob-

ability of two acoustic events happening at a predefined time lag

[25, 26].

3.2. AUD based representation

Acoustic subword units are meant to capture acoustically con-

sistent phenomena and will be referred to as acoustic unit de-

scriptors (AUDs) [27]. They represent similar recurring se-

quences of feature vectors.

The discovery of AUDs is done in two steps. In the ini-

tialization step input speech is segmented and the segments are

clustered to generate an initial transcription of the input speech

in terms of sequences of segment labels. The second step is

the iterative training of hidden Markov models (HMMs) for the

discovered clusters. The block diagrams of these steps are de-

picted in figure 1 and will be briefly described in the following.

For a more detailed description the reader is referred to [21].

Iter. HMM Train (3)
Speech

Init

Segmentation (1)

Audio Segments

Clustering (2)

Segment Labels

Model est.

Decoding

AUD Sequence

Figure 1: AUD discovery algorithm

3.2.1. Segmentation

In the segmentation step the speech input is segmented into con-

sistent speech segments according to a local distance measure

between the mean representative of the current segment and the

next feature vector. If the value of the local distance measure is

greater than a threshold, a new segment is created. A constraint

on the minimum segment length is used to prevent the genera-

tion of short segments. These parameters are chosen such that

the average segment length corresponds to the expected length

of a phoneme. As the local distance measure the cosine distance

is employed.

3.2.2. Clustering

In the clustering step the segments from the segmentation step

are grouped to obtained clusters according to acoustic consis-

tency. Clustering is carried out on a (sparse) adjacency ma-



trix derived from the distances between representative segments

and all other segments. The (length normalized) dynamic time

warping distance between two segments is employed, using the

cosine distance as the local distance measure. The represen-

tative segments are chosen according to the kmeans++ initial-

ization [28, 29]. Finally the unsupervised graph clustering al-

gorithm by Newman [30] is used for clustering. As output for

each utterance, a sequence of cluster labels is assigned which

will serve as an initial label sequence for the iterative training

of the AUD models.

3.2.3. Iterative AUD HMM Training

In the iterative HMM training step, the cluster labels are inter-

preted to be AUD labels and used as an initial transcription T
(0)
d

for the d-th input speech utterance. For each AUD we define a

3-state left-to-right HMM with Gaussian mixture output den-

sities and refer to the set of all AUD models as ΛA. We use

a zerogram language model to connect the AUDs. The HMM

parameters ΛA and the transcriptions Td are updated by alter-

nating between re-estimation of the AUD parameters, eq. (1),

and decoding of the input speech, eq. (2) [19, 22]:

Λ
(i+1)
A

= argmax
ΛA

D∏

d=1

p(Xd|T
(i)
d ; ΛA) (1)

T
(i+1)
d = argmax

Td

P (Td|Xd; Λ
(i+1)
A

). (2)

Here, i is the iteration index andXd denotes the MFCC feature

vector sequence of the d-th utterance. D is the total number of

utterances.

3.2.4. Mapping of utterance to fixed-length vector

The AUD sequences, which describe the utterance, are not di-

rectly amenable to NMF. They need to be mapped to a repre-

sentation of fixed dimension, in which linearity holds, i.e., that

the utterance-level speech representation is approximately equal

to the sum of the speech representations of the acoustic pat-

terns it contains [25]. This vector is created by replacing each

AUD in the recognized sequence of AUDs of an utterance by

an indicator vector, where the element of the vector represent-

ing the AUD is set to one and all other elements to zero. Using

all vectors of an utterance a histogram of occurrences and co-

occurrences is built and used as input to the NMF.

4. DOMOTICA-3 Database

In this work, we employ the DOMOTICA-3 database that has

been collected in the framework of the ALADIN project [16].

The DOMOTICA-3 database is a collection of recordings of

Flemish dysarthric speakers controlling a home automation sys-

tem. Recordings were collected in two phases. During the first

phase users were asked to command 26 distinct actions in a sim-

ulated 3D computer animation of a home environment, in order

to ensure an unbiased choice of words and grammar by the user.

In the second phase speakers were recorded reading these com-

mands to obtain enough repetitions of each spoken command.

In this study only speakers that have uttered at least five rep-

etitions of each command were included. They will be referred

to by unique id’s 17, 28, 29, 30, 31, 34, 35, 41 and 44. The

total number of utterances per speaker was in the range of 151

to 350, with an average of 238. The total size of the database

is about 4 hours of speech. Speech intelligibility scores were

obtained for all speakers by analysing their recorded speech us-

ing an automated tool [31], which led to the conclusion that all

except two speakers (id’s 17 and 44) were considered to utter

dysarthric speech.

5. Experiments

We performed our experiments on the DOMOTICA-3 database

using the NMF based command recognition framework. We

used the following setups:

1. Gaussian posteriorgram based representation

2. AUD sequence based representation

3. AUD posteriorgram based representation

4. Phoneme sequences derived using a speaker independent

general acoustic phoneme model

For setup 1 the results were produced by using 100 full-

covariance Gaussians trained on all speech material available

for that speaker as described in subsection 3.1. From these the

histogram of occurrences and the HACs at four different lags,

2, 5, 9 and 20 frames, were computed. The resulting vector to

be forwarded to the NMF-based semantic inference stage was

of size 4× 1002 + 100 = 40100.
For setup 2 we learned speaker dependent acoustic models

of the AUDs with and additional silence HMM on the speech

material available for that speaker. Each state has one 39-

dimensional Gaussian emission density with a diagonal covari-

ance matrix. A zerogram language model was used. The num-

ber of AUDs per speaker varied between 22 and 98 AUDs, de-

pending on the outcome of the unsupervised clustering algo-

rithm described in 3.2.2. We then produced lattices over AUDs

for each audio recording and used the algorithm described in

[32] to learn a 4-gram language model in an unsupervised way

over the sequence of AUDs and output a refined sequence of

AUDs. We then used the discovered sequence of AUDs, with

silence HMMs removed, as input to the command recognition

algorithm by computing the histogram of occurrences and a

HAC with lag 1. The resulting vector was on average of size

502 + 50 = 2550.
For setup 3 two different posteriorgram representations

were derived using the acoustic models of the discovered AUDs.

The first representation (AUD/GMM) was derived by concate-

nating the Gaussians learned for each state of the HMM to one

GMM to again calculate a posteriorgram similar to setup 1.

Each mixture component was assigned the same weight. For

the second representation (AUD/HMM) we used the posterior

probabilities of being in a certain state of the HMM calculated

with the Forward-Backward algorithm. In both cases we did

sum the probabilities of all the states belonging to one HMM

to generate an AUD based posteriorgram, similar to a phoneme

posteriorgram. Vectors in which silence had the highest prob-

ability were removed. From the resulting AUD based posteri-

orgrams a histogram of occurrences and HACs at four different

lags, 2, 5, 9 and 20 frames, were computed. The resulting vec-

tor, that was input to the command recognition framework, was

on average of size 4× 502 + 50 = 10050.
For setup 4, which served as a baseline, a pre-trained

speaker independent general acoustic model and a zerogram

language model were used to decode the audio recordings and

produce lattices for each recording. The speaker independent

general acoustic model was trained on Dutch speech. A se-

quence of phonemes was then generated using again the algo-

rithm of [32] and learning a 4-gram language model in an unsu-

pervised way. The sequence of phonemes was used to compute



Table 1: F-scores of the different setups; for explanation see text.

Speaker 44 17 34 31 29 28 35 30 41 Average

# Utterances 166 350 335 235 181 214 284 223 151 238

# AUDs 98 56 59 38 58 30 53 22 32 50

Setup 1: Gaussian posteriorgrams 99.35 99.74 98.76 92.09 99.39 93.99 97.53 93.26 97.95 97.02

Setup 2: AUD sequences 95.49 96.92 90.38 79.88 92.74 76.18 94.31 85.31 90.78 89.49

Setup 3: AUD/HMM posteriorgrams 93.03 96.06 91.30 86.48 95.00 79.99 91.38 88.66 93.48 90.75

Setup 3: AUD/GMM posteriorgrams 96.29 99.24 97.67 90.50 98.12 89.51 95.65 93.22 94.58 95.30

Setup 4: Phoneme recognizer 90.75 87.17 78.69 66.32 84.84 54.23 80.99 56.16 64.81 74.70

a HAC-based representation in the same way as was done with

the AUDs above and then forwarded to the command recogni-

tion framework.

As a performance measure the slot Fβ=1 score of the ac-

tion recognition was used, which is the harmonic mean of slot

precision and slot recall. For its computation a five-fold cross

validation procedure was used as described in [17], with four

blocks for training and one for testing.

Figure 2 shows the recognized AUD sequences for two ut-

terances of the sentence “ALADIN hoofdeinde op stand 1” by

speaker 30. Note that the name assigned to an AUD is, of

course, arbitrary, as no phonetic interpretation can be given to it

in an unsupervised training. Same recognized AUD sequences

are marked in color. The similarity between the two sequences

is striking. The AUDs can be interpreted as phone-like units

and sequences of it as word-like entities. Differences between

the two recognized sequences can be viewed as recognition er-

rors or pronunciation variations.

Example 1:

AJ AE AA AC B AF F BJ C H H AH AB AF AC AD BJ C AC

F F AD E I AC H AH AB AF F

Example 2:

AJ AE AA AC B AF F BJ C H AH AB AF AC AD E C H BB

F AD E I AC H AH AB AF F

Figure 2: Recognized AUD sequences of two utterances of the

same sentence spoken by speaker 30

Figure 3 shows the posteriorgrams of the example utter-

ances obtained by the Forward-Backward algorithm on the

AUD/HMMs. A certain similarity can again be observed be-

tween the two posteriorgrams, indicating that posteriograms on

AUDs are also a consistent representation of an utterance.

Table 1 shows the slot F-scores of the individual speakers

and the average over all speakers (weighted by the relative num-

ber of utterances per speaker) for the different setups. Addi-

tionally the number of utterances per speaker and the number

of discovered acoustic units is shown.

The table is ordered so that the left most speaker has the

highest intelligibility score while the score decreases when go-

ing to the right. The Speakers 44 and 17 are considered as nor-

mal speakers.

6. Discussion and Conclusion

First of all, the results clearly show that all unsupervised mod-

eling approaches deliver significantly better slot F-scores than

the speaker-independent phoneme recognition baseline, show-

ing the suitability of unsupervised acoustic model training for

dysarthric speech. Of the unsupervised techniques, the Gaus-

sian posteriorgrams come out first, followed by the posterior-
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Figure 3: AUD/HMM: Example 1 (top), Example 2 (bottom)

grams computed from AUDs, while the AUDs themselves per-

formed clearly worse. It seems that the posteriorgrams are

able to capture more information relevant for semantic infer-

ence than is available in the mere presence or absence of an

AUD.

Note, however, that the Gaussian posteriorgrams are the

most expensive description of the utterance in terms of the vec-

tor length forwarded to NMF, which was 40100. The AUD-

based posteriorgrams are coded in a vector of only one quarter

of the size, and the AUDs in a vector of approximately one fif-

teenth of the size.

Another interesting observation is that the slot F-score does

not monotonously decrease with the intelligibility of the speech.

While the speakers are ordered in the table according to de-

creasing measured speech intelligibility score, the slot F-scores

obtained from the various ASR variants are not ordered in the

same way. Especially the speakers 29, 35 and 41 achieve higher

results than one would expect from their rank according to

speech intelligibility. One reason for this might be, that con-

sistency in utterances is more important for the recognition task

than intelligibility and that it is not measured in the intelligibil-

ity score.

While a definite statement is certainly not possible from this

limited dataset, these results nevertheless are encouraging, as

they point to the potential of self-learning vocal user interfaces:

not only are they superior to off-the-shelf speaker-independent

ASR solutions, unsupervised learning approaches have the po-

tential of performing on dysarthric speech as well as on normal

speech.
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