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Abstract

Acoustic sensor network clock synchronization via time
stamp exchange between the sensor nodes is not accurate
enough for many acoustic signal processing tasks, such as
speaker localization. To improve synchronization accuracy
it has therefore been proposed to employ a Kalman Filter to
obtain improved frequency deviation and phase offset es-
timates. The estimation requires a statistical model of the
errors of the measurements obtained from the time stamp
exchange algorithm. These errors are caused by random
transmission delays and hardware effects and are thus net-
work specific. In this contribution we develop an algorithm
to estimate the parameters of the measurement error model
alongside the Kalman filter based sampling clock synchro-
nization, employing the Expectation Maximization algo-
rithm. Simulation results demonstrate that the online esti-
mation of the error model parameters leads only to a small
degradation of the synchronization performance compared
to a perfectly known observation error model.

1 Introduction

While wireless sensor networks have been an active area
of research for many years, acoustic sensor networks
have only recently received increased attention. With dis-
tributed microphones improved acoustic source tracking
and speech enhancement can be achieved, as it is likely
that at least one sensor is close to a source. However, if
each sensor node is equipped with its own sampling os-
cillator, there is a need for synchronizing the distributed
clocks to a precision sufficient for beamforming and local-
ization purposes. Without clock synchronization, the devi-
ation of the distributed crystal oscillators from their nomi-
nal frequency is so large, on the order of 50ppm for stan-
dard low-cost devices, that the sampled acoustic streams
can no longer be used for joint multi-channel processing.
Even computer network synchronization methods, like the
Network Time Protocol [1] or the time stamp exchange
protocol by Chaudhari [2] do not achieve a precision that
is high enough for acoustic signal processing.

A way to raise the precision of clock synchronization
is to postprocess the phase and frequency deviation esti-
mates obtained from an analysis of the properties of the
sampled signals [3,4] or by time stamp exchange. In []
we devised a Kalman Filter to obtain refined estimates of
the clock frequency deviation and the phase offset between
a master and a slave sensor node from a measurement of
the deviation that was computed using the two-way time
stamp exchange protocol of [2]. Later this approach was
extended to synchronize a whole sensor network to a com-
mon time base by devising a gossiping approach which re-
quires only local exchange of timing information between
neighboring nodes [61.

An important component of the employed Kalman fil-
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ter is the so-called measurement or observation model
which relates the measurements to the state variables of
the filter in a probabilistic way. The relationship between
the measured and the true clock frequency deviation and
phase offset depends on the measurement approach used —
in our case the time stamp exchange protocol of Chaudhari
[2] — and the specific properties of the employed hardware
and communication protocol. In 5] the observation model
was estimated in advance in a special measurement setup,
prior to its use in the clock synchronizing Kalman filter.

The goal of this paper is to develop an approach to
jointly estimate the observation model parameters and
track the frequency deviation and phase offset in a Kalman
filter. Note that the first requires an estimate of the second
and vice versa. This chicken-and-egg problem is solved by
employing an iterative algorithm that alternates between
observation model parameter estimation and Kalman fil-
tering. The algorithm is derived as an instance of the Ex-
pectation Maximization (EM) algorithm. With the online
estimation of the observation model the hope is to have a
universal clock synchronization approach that is applica-
ble to different networks and without a prior measurement
phase: the system adapts to the characteristics of the net-
work while it synchronizes the nodes to a common clock
and while the nodes carry out signal processing tasks.

2 Clock Synchronization

In the following we shortly summarize the two-way mes-
sage exchange algorithm by Chaudari [2], which is one of
the basic components of the proposed synchronization ap-
proach.
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Figure 1: Two-way message exchange between master
and slave node

Figure[Ilshows the (k — 1)-st and the k-th message ex-
change round, which have a temporal distance of 7" sec-
onds. During the k-th message exchange the slave node
sends a packet to the master at time g (measured in
units of the slave clock) which is received by the masters at
time 7, R,k (master time). The unknown transmission time is
given by &g i (slave time). Subsequently the slave replies
to the request with a packet at time 74 j which the master
receives at time ¢ 4 j, after a transmission time & 4 .

Let us assume that the oscillator of the master node has
a frequency of fps with foy = (1 +€)- fs, where fg is the
oscillator frequency of the slave node. In the following,



€ = €(k) will be called the (relative) frequency deviation at
the k-th time stamp exchange. According to [§] it can be
estimated from the exchanged time stamps, see Fig.[Il via

é(k) = (Tre —tap-1) — (Crp—1—Fan) P
(trk—tar—1)— (trr—1—tak)

which can be regarded as the sum of the true frequency
deviation ¢(k) and an additive error term v, (k) [5]:

(Erk—Erk—1)+ (Eak—1—Eak)

é(k)~e(k)+ .2
(k) ~ (k) (trk—tri—1)+ {tar—1tar—1)
ve (k)
Similary, we find for the phase offset estimate
1, - -
@(k) = 3 ((trk+tak) = (trKk +tak)) 3)

~ k) + 3 (Erie— Eai) = oK) Fvpk), )

again being the sum of the true phase difference (k) be-
tween master and slave node and an additive error v, (k).
In the following discussion &(k) and @(k) will be called
observations, as they constitute the measurements at the
input of the Kalman filter.

2.1 Observation Error

We found in long term experiments on hardware devices
(see [E]) that the distribution of v, has the shape as given
by Fig.
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Figure 2: Histogram of observation error v, (obtained
from 6 hours of data) and GMM approximation

This structure can be explained by the assumption
that the unknown transmission times & consist of a con-
stant minimum delay 7¢, an integer multiplicity of de-
lays Ty (e.g., from MAC wait times and timeouts) and
an exponentially distributed random component 7, with
E=Tc+n-Tg+Te,n € Z. Approximating the denomi-
nator of eq. (2) by 27", where T is the interval between two
time stamp exchange rounds, see Fig. [ the additive error
term can be written as

T, (k)
2T

L h(k) )

ve(k) = ST

where h(k)T, summarizes the positive and negative mul-
tiples of T, and T,.(k) comprises the exponentially dis-
tributed contributions from the four transmission times &.
In the following, we refer to the first term in (@) as the
“small scale error” and to the second as the “large scale
error”.

According to Fig. 2| the histogram can be well approx-
imated by a Gaussian Mixture Model (GMM):

M
pve) = Y men N (vesh- e, 0), (6)
h=—M

with weights 7. ;,, where the variances of all component
Gaussians are equal and denoted by o>. Further the means
of the Gaussians are on an equispaced grid and can thus be
expressed by: h-pe = h-Ty/(2T).

Using this model, eq. @) can be approximated by

€(k) = e(k) + ce(k)pe +ne(k), (N

where ¢ (k) € {—M,...M} is the index of the mixture
component from which the noise v (k) is drawn, and n. (k)
is Gaussian noise of variance 2.

The phase offset observation error v, (k) from eq. (3)
is also approximated by a GMM. The means of the com-
ponent Gaussians are multiples of 1,:=74/2. In the fol-
lowing we will derive the parameter estimation formulas
for the frequency deviation related GMM only, since the
phase offset GMM parameters can be either handled in the
same manner or inferred from the frequency deviation pa-
rameters by ., =T+ i and 02 = 02 /2.

Note, that the distribution in Fig. [2| depends on the
hardware, the wireless network and the parameters of the
two-way message exchange algorithm and thus will vary if
other hardware components or parameter sets are used.

3 EM Parameter Estimation

We employ the EM algorithm to estimate the GMM pa-
rameters ®, = [7767,M,...,7T€7+M,u€,03]. Given N mes-
sage exchanges, the observations are € = [¢(1),...&(N)].
The hidden variables are chosen to be the true frequency
deviations € = [¢(1),...€(N)], and the mixture component
labels ce = [ce(1),...ce(N)].

The expected value of the loglikelihood of the com-
plete data given the observations is

Q(O:0() = E[In{p(e.é,c:0}&0]  (8)

=¥ [ n{p(ele.copleleople)} ple.c.leyde

where k is the iteration counter and where the summation
is over all sequences c. of length N. For the terms inside
the logarithm in (§) we have

N

p(éle,cc) = [T (e(k)se(k) + ce(k)pe,02)  (9)
k=1
N

plee) = [ meccn)s (10)
k=1

assuming that the labels ¢, (k) are i.i.d. Note that p(e|e.) =
p(€) is independent of .

Expectation step

In the E-step the posterior distribution of the hidden vari-
ables is calculated. We assume that the frequency devia-
tion e(k) is Gaussian and follows a Markov process. Note,



however, that the observation noise v.(k) is not Gaus-
sian! Equation () can be interpreted as a switching ob-
servation model [[7], where, given the value of ’switch
variable’ c.(k), the observation noise is Gaussian, see
eq. @). It is well-known that exact inference in the pres-
ence of a switching observation model is computationally
intractable, since the number of hypotheses (i.e., switching
variable sequences) to be considered grows exponentially
with time &]. In light of an intended implementation on
low-cost hardware, the exponential growth is avoided by
considering only the hypothesis with the highest probabil-
1ty.

The posterior probability of the label indicating the
mixture component can be computed as

(k) == P(ce(k) = hlé(k),e(k|k —1);00)) (11)
N (@(R)se(klk— 1)+ bl (02) "))
YN N @ER)se(klk — 1)+ mul (02) " xln

where é(k|k — 1) is the state prediction of the Kalman filter
and

(k)= argglaX{vh(k‘)} (12)

is the class label of the most likely hypothesis. The stan-
dard Kalman filter is fed with the observations

2(k) = (k) — e (kpe. (13)

Note that this Kalman filter only deals with the small scale
errors, while the large scale errors are removed prior to the
Kalman filter by eq. (I3).

With these approximations the auxiliary function of
eq. (8) can be written as

N
Q(0:0) < Y Q1(0;0), (14)
k=1
where
M
Q0= Y 1n{7r€ A (E(k): e(k| k)
h=—M

() 1e, o () (k). (19)

Maximization step

For the M-Step we take the derivatives of eq. (I4) with
respect to the GMM parameters. It holds for the weights

w13
m = L k) (16)

the mean is updated via

N +M
A ACR MG ORI CD)
bt = " (17)
Y n(k)-h?
k=1 h=—M
and the variance with
N +M 5
Y X (k) (&(k) —é(klk) — hpic,x)
(02)(%1) k=1h=—M
€ N +M
Y (k)
k=1 h=—M

(18)

3.1 Initialization of parameters

At the beginning the identification of the large scale er-
ror via eq. (I2) cannot be performed, because the Kalman
filter state estimate é(k|k) is not available. However, we
can assume that the deviation of the clock does not change
abruptly over time and that the ground truth during the k-
th and (k — 1)-st message exchange are roughly equal. We
subtract subsequent observations to get observation error
estimates A¥, (k) with

Avc (k) =¢&k)—é(k—1)=v.(k)—v(k—1). (19)
The distribution of Av. (k) is a GMM with double the num-
ber of mixture components as the distribution of v., and
whose component means are also equispaced at multiples
of 1., while the variances of the component densities are
doubled. However, initial values for the mean p. and the
variance o can be easily found by clustering a set of L
values AT (k),k=1,...L.

3.2 Online parameter estimation

To arrive at an online parameter estimation the iterative
block EM algorithm is replaced by a recursive online EM.
The latter can be derived employing a gradient ascent ap-
proach:

O (k) =0c(k—1)

+7Vo QU@ o 20)

where the iteration index « is replaced by the observation
index k and 7 is the step size. We find for the mean

He k. = ,U/e k—1
+nzvh —e(klk) — hpepot] 2D
and for the variance
o2 2
ek — U Z Y (k [Ue,k 1
y A 2
—(e(k)—e(km) ~hpies) |- 22)

Finally, the weight recursion is given by

Tehk = Te h—1 +Tr (Vo (K) = Te pp—1],  (23)

while by renormalization it is assured that the sum of all
weights equals one.

4 Simulation results

We simulated networks with random topologies to study
the influence of the online error model estimation on the
synchronization process. For each network size we con-
ducted 300 simulations of 2 h length. The average number
of neighboring nodes a node has is approximately 3.

The clock synchronization between a master and a
slave node that was discussed so far in this paper was ex-
tended to synchronize the clocks of many sensor nodes to
a common time base by employing a gossiping algorithm,
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Figure 3: Deviation of sampling frequencies between vir-
tual master node and slave nodes (network with 25 nodes)

which exchanges timing information only among neigh-

boring nodes. For a description of the gossiping based sen-

ﬁgr network clock synchronization the reader is referred to
1.

In Fig.Bla sample result for a network of 25 nodes is
depicted (left part shows the first 4 min, right part shows
4 min till 120 min. Note the different resolutions of the y-
axis.). In the first 3 min the initialization phase takes place
as discussed in Sec. BJl Given T = 10s this amounts
18 observations. If the number of observations is further
reduced, there is a risk that initialization fails. Afterwards,
the network remains in a synchronized state keeping the
frequency deviations of all nodes below 0.2ppm (see Fig.

[l right).
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Figure 4: Maximum frequency deviation between nodes

in the network after initialization phase

In Fig. @ the results for the maximum frequency devia-
tion between nodes, i.e. the largest observed frequency de-
viation between all combinations of nodes after the initial-
ization phase, are depicted. For each network size the span
width between the best and the worst experiment as well as
the average value of all experiments are shown. Here, the
proposed approach for estimating the GMM (“GMM esti-
mated”) is compared against our previous approach where
the ground truth GMM (“GMM ground truth”) is estimated
from training data in advance.

A deviation of 0.2ppm for the duration of T =
10s causes a phase error of 0.2ppm - 10s-8.192MHz =
16.384 Oscillations. Since our system works at an over-
sampling factor of 512 (oscillator frequency: 8.192 MHz,
sampling frequency: 16kHz) the phase error between
the audio streams increases by 16.384 Oscillations/512 =
0.032Sample=3.2 %.

In Fig. 5l the RMS phase errors are shown, where the
span for the best and the worst results of the 300 simula-
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Figure 5: RMS phase errors between nodes in the network
after initialization phase

tions and the average RMS are marked. Since the phase
offset is the accumulation of the frequency deviation over
time it is not surprising that the phase offset error increases.
However, the results for the frequency deviation and the
phase offset are promising that the proposed approach is
capable to estimate the error models precise enough, that
the overall performance of the network synchronization is
only slightly degraded.

5 Conclusions

We have presented an online expectation maximization ap-
proach for estimating observation error models, which is
applicable even on limited hardware resources. To this end
the Kalman filter predictions are integrated into the expec-
tation step of the EM algorithm. Simulations of large ran-
dom networks showed that the remaining error caused by
the non-optimal error model only slightly degrade the net-
work synchronization performance.
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