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Abstract

Several self-localization algorithms have been proposed,
that determine the positions of either acoustic or visual sen-
sors autonomously. Usually these positions are given in a
modality specific coordinate system, with an unknown ro-
tation, translation and scale between the different systems.
For a joint audiovisual tracking, where the different modal-
ities support each other, the two modalities need to be
mapped into a common coordinate system. In this paper
we propose to estimate this mapping based on audiovisual
correlates, i.e., a speaker that can be localized by both, a
microphone and a camera network, separately. The voice
is tracked by a microphone network, which had to be cali-
brated by a self-localization algorithm at first, and the head
is tracked by a calibrated camera network. Unlike exist-
ing Singular Value Decomposition based approaches to es-
timate the coordinate system mapping, we propose to per-
form an estimation in the shape domain, which turns out to
be computationally more efficient. The estimation process
is embedded into a Random Sample Consensus (RANASC)
framework to obtain a noise robust mapping. Simulations
of the self-localization of an acoustic sensor network and
a following coordinate mapping for a joint speaker local-
ization showed a significant improvement of the localiza-
tion performance, since the modalities were able to support
each other.

1 Introduction

Audiovisual sensor networks have found widespread use in
many applications such as teleconferencing systems, smart
rooms or surveillance and monitoring systems [1]. Distribu-
ted cameras and microphones are used to localize and track
a source of interest, and to capture and enhance audio and
video signals. In order to steer these sensors to their tar-
gets, many algorithms require knowledge about the sensor
positions. While the sensor positions can be determined
manually, there exist several self-localization techniques,
which, determine the position of the sensors automatically.
Such a calibration is typically realized by localizing and
tracking an object and then determining the position of the
sensors such that the location estimates are most plausible.

Visual calibration approaches rely on a known and eas-
ily recognizable object that is imaged by all cameras. Fea-
tures extracted from this object are then used to estimate
the camera pose, while Kalman filters are able to handle
temporary occlusion of the calibration object [2]. Auto-
matic calibration algorithms like [3] often use the Scale-
Invariant Feature transform algorithm to obtain the required
features from an arbitrary scene.

On the acoustic side, time of flight (ToF) based algo-
rithms, which require a tight clock synchronization between
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transmitter and receiver, in combination with special cali-
bration hardware [4] achieve high positioning accuracies.
Time difference of arrival (TDoA) based algorithms use
signals with appropriate correlation properties to reduce
the synchronization requirements and to accomplish pre-
cise results [5].

Self-localization algorithms, that determine the posi-
tion of either acoustic or visual sensors, are usually unable
to return absolute position coordinates in a common world
coordinate system. However a common coordinate system
is mandatory for a cross-modality localization and track-
ing of events. In [6] the authors estimate joint coordinate
system of a stereo camera and an acoustic echo localiza-
tion system by matching the trajectories of both modalities
using a particle filter.

In this work, the visual sensor network is assumed to
be the reference coordinate system. The speech signal of a
moving speaker is used as input for an acoustic self-locali-
zation algorithm to estimate the positions of the acoustic
sensor network. Applying audiovisual correlates, with this
we denote events, that can be localized by both sensor net-
works separately, the mapping from the acoustic to the vi-
sual sensor network can be revealed. The event locations
in modality specific coordinate systems are described by
a set of points. Mapping a set of points from one coordi-
nate frame to another is known as Rigid Body Transforma-
tion (RBT). In contrast to the widespread approach from
[7] to compute the RBT parameters (scale, rotation and
translation) via a Singular Value Decomposition (SVD) we
suggest a different and computationally more efficient way.
The RBT parameters are computed in the shape domain [8],
which is given by the discrete Fourier transform (DFT) for
the two-dimensional mapping problem considered here.

In the next section, we review the coordinate mapping
problem and its solution by SVD, while Sec. 3 outlines the
DFT-based approach. Sec. 4 presents the overall calibra-
tion framework to estimate the acoustic sensor positions in
its modality specific coordinate system, followed by map-
ping it to the visual sensor network. Simulation are carried
out in Sec. 5, while Sec. 6 concludes this paper.

2 Formulation of the Coordinate Map-

ping Problem

Our goal is the estimation of a common coordinate sys-
tem for an audiovisual sensor network in order to perform
a joint localization and tracking, where the modalities sup-
port each other. After each modality has been calibrated by
its domain specific algorithm, we have to estimate the RBT
parameters to map the acoustic sensor positions into the vi-
sual coordinate system. To this end, a moving speaker is
tracked by the microphone and camera network separately.
Let the i-th speaker position estimate of the acoustic sensor
network be denoted by mi and the corresponding estimate



from the visual network by ci, where each estimate is rep-
resented in its modality-specific coordinate system.

To map one coordinate system to the other we have to
estimate the rotation matrix R, the translation vector t and
the scale factor s between the two. These parameters are
used to transform every point mi measured in the acous-
tic coordinate system to a point ci measured in the visual
coordinate system:

ci = sRmi+ t; i= 0, . . . ,N −1, (1)

where N is the total number of observations.
According to the comparison of different techniques to

estimate the RBT parameters (R, t and s), SVD based ap-
proaches stand out due to their stability [9].

The RBT parameters can be found by minimizing the
following least squares objective function:

〈R∗,t∗,s∗〉= argmin
R,t,s

1

N

N−1

∑
i=0

‖sRmi+ t−ci‖
2

. (2)

Following [7] the parameters that minimize Eq. (2) can be
revealed by a SVD applied to the cross-dispersion matrix

D=
1

N

N−1

∑
i=0

(ci− c̄)(mi−m̄)T , (3)

where m̄ and c̄ denote the average of all mi and ci respec-
tively. The SVD decomposes the cross-dispersion matrix
D into three matrices: D=UWVT.

Now the RBT parameters can then be recovered as:

R∗=UVT, t∗=c̄−sR∗m̄, s∗=σ−2
m trace

(

RTD
)

, (4)

where σ2
m is the trace of sample covariance matrix of all

points mi, i= 0, . . . ,N −1.

3 Estimation in the Shape Domain

Statistical shape analysis is used in many areas of research,
mainly in geodesy and biology, to measure the similarity
of objects, irrespective of their orientation, translation and
scale. Each object is described by a set of Cartesian coordi-
nates called landmarks. To obtain a representation of these
landmarks irrespective of orientation, translation and scale
these landmarks are transformed into the shape domain.

A particular instance of shape analysis is the distortion-
free transformation from one coordinate system into an-
other, that is described by Eq. (1), and which is known
as Helmert-Transformation. In 3-dimensional space this
transformation is specified by 7 parameters which are com-
puted by pairs of landmarks, that are given in both coor-
dinate systems. In this paper we concentrate on a coordi-
nate mapping in the plane, i.e. in two dimensions. For this
case a particularly simple way of computing the coordinate
mapping will be presented, which is based on the discrete
Fourier transform.

To this end, we introduce a notation to describe the
acoustic position estimates as complex numbers ui =mi,1+
jmi,2, and the visual estimates as vi = ci,1 + jci,2, respec-
tively. Thus the coordinate mapping is expressed as:

vi = αui+β (5)

where α corresponds to rotation and scale (sR) and β to
the translation t. Stacking all observations into vectors

u = [u0, . . . ,uN−1] and v = [v0, . . . ,vN−1], and applying
the previous notation to the objective function of Eq. (2)
leads to:

〈α∗,β∗〉= argmin
α,β

(αu+β1−v)H (αu+β1−v) , (6)

where 1 denotes an N -element vector of ones and (·)H the
complex conjugate transpose of a matrix or vector.

The discrete Fourier transform (DFT), which can be
computed in a very efficient way using the FFT algorithm,
provides an attractive algorithm to obtain a shape domain
representation of our landmarks. Let x be the DFT of u
and y the DFT of v respectively, then the optimization
problem of Eq. (6) can be reformulated using the orthog-
onal properties of the DFT as follows:

〈α∗,β∗〉= argmin
α,β

(αx+βe−y)H (αx+βe−y) , (7)

where e= [1,0, . . . ,0]
T

.
Due to the orthogonal properties of the DFT the 2-di-

mensional optimization problem is decoupled into two sep-
arate optimizations:

α∗ = argmin
α

(αx2:N−y2:N )H (αx2:N−y2:N ) and (8)

β∗ = argmin
β

(α∗x1+β−y1)
H (α∗x1+β−y1) , (9)

where the first bin of the DFTs is denoted by (·)1 and all
other bins by (·)2:N . Since Eq. (8) is a general least squares
problem the solution is found to be

α∗ = xH
2:Ny2:N/

(

xH
2:Nx2:N

)

, (10)

whereas Eq. (9) is just a linear equation, which is mini-
mized by

β∗ = y1 −α∗x1. (11)

The resulting algorithm consists of three steps. First
compute the DFTs of the complex observation vectors, then
evaluate Eq. (10) and finally determine the translation us-
ing Eq. (11). If only the rotation and translation are to be
estimated the factor α∗ obtained for Eq. (10) has to be nor-
malized to unit length (ᾱ) to preserve the original scale,
before it is plugged into Eq. (11). The RBT parameters
in the Cartesian domain can be recovered from the shape
domain result as follows:

s= |α| , R=

[

ℜ{ ᾱ

s
} −ℑ{ ᾱ

s
}

ℑ{ ᾱ

s
} ℜ{ ᾱ

s
}

]

and t=
1

N

[

ℜ{β}
ℑ{β}

]

, (12)

where ℜ and ℑ denote real part and imaginary part, respec-
tively. The RBT parameter estimation in the shape domain
has been derived from the same objective function as the
SVD based approach. Thus, both algorithms deliver the
same results, up to the numerical precision boundary.

4 System Overview

Before the RBT parameters can be estimated based on com-
mon event localizations in both modalities, one has to ac-
quire the location data. Here we assume the visual sensor



network has been calibrated in advance, such that the cam-
era positions are perfectly known. The visual system there-
fore provides the reference coordinate system for the coor-
dinate mapping. Each node of the camera network is con-
nected to a Histogram of Oriented Gradient (HOG) detec-
tor, which detects the head and shoulder of a person [10] to
get visual DoA estimates. The impinging angles are used
in an intersection based approach from [11] to obtain the
speaker location.

In case of the acoustic sensor network, each node con-
sists of two microphones, thus, DoA estimates are avail-
able. The DoA estimation for the acoustic modality is re-
alized by cross correlating the filter coefficients of a filter-
and-sum beamformer (FSB) [12]. The beamformer oper-
ates with a sampling rate of 16kHz at a block length of
128 samples, resulting in a new DoA estimate every 8ms.
To obtain the event locations for the acoustic part with the
same intersection based technique, as in the visual part, the
locations of the acoustic sensor nodes need to be known.
To obtain them, we apply our self-localization algorithm
for acoustic sensor networks, which we have originally
presented in [13]. In this self-localization algorithm the
DoA estimates are used to formulate geometric relations
between the sensor and event locations, from which a large
nonlinear system of equations is obtained. The solution of
this system delivers the most plausible sensor localizations.
To obtain good results even in case of imperfect DoA esti-
mates due to room reverberation, the algorithm is embed-
ded into a RANSAC framework for outlier rejection, which
has led to a significant error reduction.

Since the algorithm uses solely DoA information only
relative sensor positions can be revealed, with an arbitrary
scale factor and an unknown rotation and translation to the
visual sensor network, which is assumed to be the refer-
ence. As it is shown in [14], TDoA measurements can be
employed to estimate this scale factor, thus, there remains
only the estimation of a rotation and translation to map the
acoustic sensor locations to the visual coordinate system.
To estimate these RBT parameters the proposed coordinate
mapping algorithm in the shape domain can be applied.

It is very critical to estimate precise RBT parameters
to be able to benefit from the two modalities in a joint lo-
calization and tracking. In the noise free case with per-
fect event localizations the RBT parameters can be easily
recovered, but measurement errors have an impact on the
performance. Since the RANSAC framework boosts the
performance of the acoustic self-localization process, we
also use a RANSAC framework for the RBT parameter
estimation. At first, an initial set of position estimates is
selected at random to perform the RBT parameter estima-
tion. Two measurements would be sufficient, but our ex-
periments revealed that the best performance is achieved
with approximately 10 measurements, since a sufficient
variability of the input samples is required for precise re-
sults. These parameters are used to determine a subset of
measurements, that fit to the model, up to a threshold. Here
we used the Euclidean distance between the measurements
of the two modalities after transformation to the same co-
ordinate system. If enough measurements are compatible
with the model parameters, we incorporate all compatible
observations into the RBT parameter estimation, otherwise
we start again. This procedure is repeated until either a pre-
defined amount of iterations is reached or enough observa-
tions fit to the RBT parameters.

Based on the automatically found locations of the acous-

tic sensors and the estimated RBT parameters we are able
to map the acoustic trajectory into the visual reference co-
ordinate system and then perform a joint localization and
tracking. The same intersection based algorithm as before
is used to combine both modalities and their corresponding
DoA estimates. The overall block diagram of this system
is shown in Fig. 1.
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Figure 1: Block diagram of the self-calibrating joint loca-
tion system.

5 Experimental Results

We simulated 5 random speaker trajectories consisting of
≈150 positions, with an approximate duration of 20min
each for 2 different sensor configurations located in a room
of 5m×6m. 4 virtual cameras and 4 two-element micro-
phone arrays are located in the vicinity of the walls, ori-
ented towards the center of the room. The room impulse
response for reverberation times from 0ms up to 500ms is
simulated using the image method [15]. Acoustic DoA es-
timates, which reside in the plane, are then obtained from
the FSB coefficients, which continuously adapt to the mov-
ing sound source.

For the visual part, DoA estimates are simulated as fol-
lows. We use Hidden-Markov-Models (HMM) to describe
the errors in the DoA estimation. A limited field of view
for a camera is taken into account by dropping all angles
outside a window of ±30◦ relative to the mean camera ori-
entation. If the person is located in the visible region of
the camera the HMM of Fig. 2a is used, whereas in case of
a speaker position outside the visible region the HMM of
Fig. 2b is used.

detection

detectiondetection

missed false

(a) Person in visible region.

detectiondetection

nofalse

(b) No person in visible re-
gion.

Figure 2: Error model for visual person detection.

The transition probabilities of these models and the dis-
tribution of the error in the DoA estimation process had
been estimated on sequences (seq01-1p-0000 and seq15-
1p-0100) of the AV16.3 corpus [16]. These sequences pro-
vided a total video duration of 12.5min. We performed a
visual DoA estimation using a HOG detection [10] and de-
rived the transition probabilities and DoA error distribution
by matching the HMM model to the detection results.

Our first goal is the estimation of the positions of the
acoustic sensors in a joint coordinate system with the vi-
sual sensors, where the visual sensors are assumed to form
the reference coordinate system. The relative positions of
the acoustic sensor network, which had been determined
by a self-calibration algorithm, need to be mapped onto
the visual coordinate system. The error introduced by this
acoustic self-calibration procedure is shown in Fig. 3 by a
dashed line. Using these noisy position estimates for the
acoustic sensor network, each modality localizes the mov-



ing speaker. Then the location estimates of both modali-
ties are used to estimate the RBT parameters. The results
in Fig. 3 show that a RBT parameter estimation embedded
into a RANASC framework (RBT RANSAC) can outper-
form a conventional least squares RBT parameter estima-
tion (RBT LS) incorporating all available measurements.
Comparing the computational complexity of the SVD and
FFT based least squares implementation, the RBT parame-
ter estimation using the FFT is twice as fast as the SVD.
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Figure 3: Comparison of positioning (blue) and orienta-
tion (green) error for the calibration of the acoustic sensor
network (dashed) and the mapped sensor locations using a
least squares approach or RANSAC.

Secondly the self-calibrated sensor network is used to
localize a moving speaker. The localization performance
is shown in Tab. 1. The first two rows show the localiza-
tion error if either the acoustic or the visual sensor network
is used to localize the speaker. Since the speaker is con-
tinuously speaking nearly 100% coverage is achieved for
the acoustic part. But in the visual part there is only ap-
prox. 57% coverage, due to event locations outside the
field of view or sequences where the speaker is not rec-
ognized. If the information of both modalities are com-
bined (third row), whenever at least one modality deliv-
ers estimates, again almost 100% coverage is achieved. In
this case the localization accuracy is significantly increased
compared to an acoustic only localization. The average lo-
calization precision is slightly worse than the average pre-
cision of the video localization, this is unsurprising, since
the error is dominated by sections where only audio infor-
mation are available. If only those parts of the trajectory,
where both modalities are available at the same time, are
considered the joint localization outperforms both acoustic
and video only localization.

T60 / [ms] 0 100 200 300 400 500

E
rr

o
r

/
[m

] audio 0.09 0.18 0.32 0.43 0.55 0.66
video 0.20 0.20 0.20 0.20 0.20 0.20

audio ∨ video 0.08 0.15 0.22 0.26 0.30 0.33
audio ∧ video 0.07 0.13 0.16 0.17 0.18 0.18

Table 1: Average localization error in [m] for acoustic
only localization (audio), visual only localization (video),
combined localization using either acoustic, visual or both
modalities, depending on availability (audio ∨ video), and
joint audiovisual localization, measured on those parts of
the trajectory where both estimates are available (audio ∧
video).

6 Conclusions

We have derived a general framework to combine the cali-
bration results of two sensor systems, which are originally
given in separate coordinate systems, into a common co-
ordinate system. The positions of the acoustic sensors had
been determined by a self-calibration algorithm. We started
with an existing approach to estimate the RBT parameters
and derived a new strategy to estimate the parameters in
the shape domain. Our simulations showed that the RBT
parameters can be estimated from events that had been lo-
calized by different modalities separately. If this process
is used to calibrate an acoustic sensor network to a visual
sensor network the localization performance is boosted.
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