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Introduction

* Framework: zero-resource speech recognition
e Input: Phoneme lattice generated by ASR engine

e Goal: Discover vocabulary, segment phoneme strings
* Approach:

> Exploit consistency of character sequence within words
> Simultaneous word segmentation and LM estimation

lterative 2-step Algorithm

* Objective: Maximize sentence likelihood
* lterate: 1-best sequence extraction and word segmentation
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e _earn two n-gram language models

1. Word based nested PYLM for segmentation
2. Phoneme based hierarchical PYLM for extraction

> incorporates segmentation!

* I[ncrease the order of the models after kg, Iterations
» Start with a low model order for a initialization
» Switch to a higher order for fine-tuning

e WFST-based implementation [Heymann13]

Pitman-Yor Language Model

* Non-parametric i.e. unknown number of words
e Bayesian approach with power law prior (Zipf's law)
* Probability for word w in context u recursively calculated as
Cuw- — d\u|tuw (9‘u| + O’|u‘tu.
Pr(w|u, S,0) = I+ Cu. Do+ Cu. Pr(w|m(u), S, ©)
* Nesting: For new word use likelihood of word being
character (phone) sequence Ci, ..., Ck (fall back):

HPr CilCi—n+1.

* Probability for characters (phones) calculated as above

, Ci—1, 87 @)
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Experimental Setup

 Lattice generation: Monophone recognition using HTK
e Dataset: WSJCAMO training set

» 5628 sentences (=~ 10 h speech), 10k vocabulary

> Initial PER on best path: 33%

> Apply different pruning factors to control lattice density

> Minimal PER within lattice depends on pruning (—L-PER)

e Configurations: (n-gram orders)

word phoneme |l |phoneme Il algorithm
(1)1 -2 28 4 -8  proposed
(2) 1 2 4 proposed
* (3) 1 2 - [Neubig10]
04 2 8 - [Neubig10]
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Figure 1: F-Score over L-PER for different setups. Dashed: result on best path
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Figure 2. Measurements over iterations when switching the model order at ks, = 35.
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Figure 3: Top 100 discovered phonetic words (70 correct words)

Conclusions

* Most words occurring more than ten times are found
 PER reduces from 33% to 25.5% by discovering vocabulary
* Outlook: Combine with unsupervised acoustic modeling
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