

ITERATIVE BAYESIAN WORD SEGMENTATION FOR UNSUPERVISED VOCABULARY DISCOVERY FROM PHONEME LATTICES

Jahn Heymann, Oliver Walter, Reinhold Haeb-Umbach

University of Paderborn, Germany {heymann,walter,haeb}@nt.uni-paderborn.de http://nt.uni-paderborn.de

Bhiksha Raj

Carnegie Mellon University, USA bhiksha@cs.cmu.edu http://mlsp.cs.cmu.edu

Introduction

- Framework: zero-resource speech recognition
- Input: Phoneme lattice generated by ASR engine
- Goal: Discover vocabulary, segment phoneme strings
- Approach:
 - Exploit consistency of character sequence within words
 - Simultaneous word segmentation and LM estimation

Iterative 2-step Algorithm

- Objective: Maximize sentence likelihood
- Iterate: 1-best sequence extraction and word segmentation

- Learn two n-gram language models
 - 1. Word based *nested* PYLM for segmentation
 - 2. Phoneme based *hierarchical* PYLM for extraction
 - ► incorporates segmentation!
- Increase the order of the models after k_{sw} iterations
 - Start with a low model order for a initialization
 - Switch to a higher order for fine-tuning
- WFST-based implementation [Heymann13]

Pitman-Yor Language Model [Teh06]

- Non-parametric i.e. unknown number of words
- Bayesian approach with power law prior (Zipf's law)
- Probability for word w in context u recursively calculated as

$$\Pr(w|\mathbf{u}, S, \Theta) = \frac{c_{\mathbf{u}w} - d_{|\mathbf{u}|}t_{\mathbf{u}w}}{\theta_{|\mathbf{u}|} + c_{\mathbf{u}}} + \frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}}}{\theta_{|\mathbf{u}|} + c_{\mathbf{u}}} \Pr(w|\pi(\mathbf{u}), S, \Theta)$$

• Nesting: For new word use likelihood of word being character (phone) sequence c_1, \ldots, c_k (fall back):

$$\mathsf{Pr}(w_{new}) \sim \prod_{i=1}^k \mathsf{Pr}\left(c_i | c_{i-n+1}, \ldots, c_{i-1}, \mathcal{S}, \Theta\right)$$

• Probability for characters (phones) calculated as above

Experimental Setup

- Lattice generation: Monophone recognition using HTK
- Dataset: WSJCAM0 training set
 - ▶ 5628 sentences (\approx 10 h speech), 10k vocabulary
 - Initial PER on best path: 33%
 - Apply different pruning factors to control lattice density
 - ► Minimal PER within lattice depends on pruning (\rightarrow *L-PER*)
- Configurations: (n-gram orders)

	word	phoneme I	phoneme II	algorithm
• (1)	$1 \rightarrow 2$	2 → 8	4 → 8	proposed
v (2)	1	2	4	proposed
★ (3)	1	2	_	[Neubig10]
(4)	2	8	_	[Neubig10]

Experimental results

Figure 1: F-Score over L-PER for different setups. Dashed: result on best path

Figure 2: Measurements over iterations when switching the model order at $k_{sw} = 35$.

Figure 3: Top 100 discovered phonetic words (70 correct words)

References

[Neubig10] Learning a Language Model from Continuous Speech: G. Neubig, M. Mimura, S. Mori, T. Kawahara, InterSpeech 2010

[Teh06] A hierarchical Bayesian language model based on Pitman-Yor processes: YW. Teh, ACL 2006 [Heymann13] Unsupervised word segmentation from noisy input: J. Heymann, O. Walter, R. Haeb-Umbach, B. Raj, ASRU 2013

Conclusions

- Most words occurring more than ten times are found
- PER reduces from 33% to 25.5% by discovering vocabulary
- Outlook: Combine with unsupervised acoustic modeling