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Introduction
•Source counting treated as a model selection problem
•Directions learned by a complex Watson mixture model
•Observation selection based on power-quantile
•Comparison with DoA-based variational EM algorithm
•Proof of concept for an online algorithm

Modeling and feature extraction

Convolutive mixture model:

X(t , f ) =
K∑

k=1

Hk(f )Sk(t , f ) + N(t , f )

Phase, frequency and unit-norm normalization:

X̃d(t , f ) = |Xd(t , f )| exp
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Y(t , f ) = X̃(t , f )/‖X̃(t , f )‖

⇒ Phase solely determined by source position

Statistical model
Complex Watson mixture model:

p(Y|W1:K+1; π1:K+1, κ1:K+1) =

K+1∑

k=1

P(c(t , f ) = k ; π1:K+1)
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P(c(t , f ) = k ; π1:K+1) = Categorical distribution

p(Wk ;Bk) = Complex Bingham distribution as prior

Arguments for a complex Watson mixture model:
•All spatial information preserved in observations
•A priori distribution available

⇒ Variational EM (VEM) developed
•Distance measure WHY resembles a spatial correlation in

the beamforming concept

Offline algorithm

•First iteration (ν = 1), Quantile criterion:

A(1)(t , f ) =
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a, XH(t , f )X(t , f ) < P,

P = quantile(XH(t , f )X(t , f ),q)

⇒ Emphasize observations containing a dominant source
•Next iterations, updating observation weights:

A(ν+1)(t , f ) = A(ν)(t , f )
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⇒ Deemphasize observations related to detected sources
•Learn one source and noise component for each ν:

1: Calculate A(1)(t , f )
2: for ν = 1, . . . , νmax do

3: Use VEM with Y(t , f ) and A(ν)(t , f ) to get Bν and κν

4: Calculate principal component Wν = P (Bν)
5: if ν < νmax: then Reweight observations end if

6: end for

7: Calculate s1 = 0, sν = max
ν ′=1...ν−1

|WH
ν Wν ′| ∀ν = 1

8: Count iterations where κν>κTh ∧ sν<sTh

Online algorithm
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•Frame-wise decision with low latency
•Seeker VEM needs one frame to find a candidate
•Main VEM needs one frame to validate a source
•Conditions to accept a new speaker similar to offline case

Offline results
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Proposed algorithm
DOA-based EM

•Simulated room with image method
•White Gaussian sensor noise
•Uninformative complex Bingham prior

•Comparison: DoA-based VEM
•Proposed algorithm more noise robust
•Both algorithms suffer from

reverberation

Online results
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Images Estimation VAD on images
•Rediscovery of previously active speakers within one frame
•Diarization error rate 30 % of maximum of 187 %

Conclusions
•Robust observations emphasized
• Initialization problem relaxed by searching for single

speaker at a time
•Low latency online algorithm
•Susceptible to reverberation because of frequency

normalization ⇒ Avoid frequency normalization at the cost

of introducing the permutation problem.
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